Robotics in Mining

  • Joshua A. MarshallEmail author
  • Adrian Bonchis
  • Eduardo Nebot
  • Steven Scheding
Part of the Springer Handbooks book series (SHB)


This chapter presents an overview of the state of the art in mining robotics, from surface to underground applications, and beyond. Mining is the practice of extracting resources for utilitarian purposes. Today, the international business of mining is a heavily mechanized industry that exploits the use of large diesel and electric equipment. These machines must operate in harsh, dynamic, and uncertain environments such as, for example, in the high arctic, in extreme desert climates, and in deep underground tunnel networks where it can be very hot and humid. Applications of robotics in mining are broad and include robotic dozing, excavation, and haulage, robotic mapping and surveying, as well as robotic drilling and explosives handling. This chapter describes how many of these applications involve unique technical challenges for field roboticists. However, there are compelling reasons to advance the discipline of mining robotics, which include not only a desire on the part of miners to improve productivity, safety, and lower costs, but also out of a need to meet product demands by accessing orebodies situated in increasingly challenging conditions.


Situational Awareness Underground Mining Inertial Navigation System Blast Hole Longwall Mining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



three-dimensional normal distributions transform




four wheel drive


Australian Coal Association Research Program


armoured (or articulated) face conveyor


collision avoidance technology


Cooperative Research Centre for Mining Technology and Equipment


Carnegie Mellon University


Commonwealth Scientific and Industrial Research Organisation


differential global positioning system


degree of freedom


enhanced horizon control


global navigation satellite system


global positioning system


iterative closest point


inertial measurement unit


inertial navigation system


International Rock Excavation Data Exchange Standard


International Organization for Standardization


jigsaw positioning system


Longwall Automation Steering Committee


load haul-dump


light detection and ranging


microelectromechanical system


National Aeronautics and Space Agency


United States National Institute for Occupational Safety and Health


proximity awareness technology


proximity detection technology


pan–tilt unit


programmable universal machine for assembly


rig control system


robotic explosive charging system


radio frequency identification


remote operations centre




remotely operated underwater vehicle


real-time kinematics


simultaneous localization and mapping


shearer position measurement system




unscented Kalman filter




wide-area augmentation system


wireless ad-hoc system for positioning


extensible markup language


  1. 59.1
    M. Scoble, L.K. Daneshmend: Mine of the year 2020: Technology and human resources, CIM Bull. 91(1023), 51–60 (1998)Google Scholar
  2. 59.2
    P. Corke, J. Roberts, J. Cunningham, D. Hainsworth: Mining robotics. In: Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, Heidelberg 2008) pp. 1127–1150, Chap. 49CrossRefGoogle Scholar
  3. 59.3
    H.L. Hartman, J.M. Mutmansky: Introductory Mining Engineering, 2nd edn. (Wiley, Hoboken 2002)Google Scholar
  4. 59.4
    G.R. Osinski, T.D. Barfoot, N. Ghafoor, M. Izawa, N. Banerjee, P. Jasiobedzki, J. Tripp, R. Richards, S. Auclair, H. Sapers, L. Thomson, R. Flemming: Lidar and the mobile Scene Modeler (mSM) as scientific tools for planetary exploration, Planet. Space Sci. 58(4), 691–700 (2010)CrossRefGoogle Scholar
  5. 59.5
    Y. Bar-Cohen, K. Zacny: Drilling in Extreme Environments: Penetration and Sampling on Earth and other Planets (Wiley-VCH, Weinheim 2009)CrossRefGoogle Scholar
  6. 59.6
    Clearpath Robotics: AMEC. Puts safety first and uses advanced robotic system for mapping potash tailings, (2013)
  7. 59.7
    P. Lever: Automation and robotics. In: SME Mining Engineering Handbook, ed. by P. Darling (SME, Enlgewood 2011) pp. 805–824, Chap. 9.8Google Scholar
  8. 59.8
    D. Zlotnikov: Mining in the extreme, CIM Mag. 7(5), 50–56 (2012)Google Scholar
  9. 59.9
    P. Cross: Recent Trends in Output and Employment, Res. Pap. 13-604-MIE No. 054 (Statistics Canada, Ottawa 2007)Google Scholar
  10. 59.10
    Australian Bureau of Statistics: 5260.0.55.002 – Experimental Estimates of Industry Multifactor Productivity, 2010-11, (2011)
  11. 59.11
    N. Vagenas, N. Runciman, S.R. Clément: A methodology for maintenance analysis of mining equipment, Int. J. Min. Reclam. Environ. 11, 33–40 (1997)CrossRefGoogle Scholar
  12. 59.12
    A. Gustafson, H. Schunnesson, D. Galar, U. Kumar: Production and maintenance performance analysis: Manual Production maintenance performance analytis: Manual versus semi-automatic LHDs, J. Qual. Maint. Eng. 19(1), 74–88 (2013)CrossRefGoogle Scholar
  13. 59.13
    J. McGagh: The mine of the future: Rio Tinto's innovation pathway, (2012), Presentation given at MINExpo 2012, Las Vegas
  14. 59.14
    J.A. Aldinger, C.M. Keran: A Review of Accidents During Surface Mine Mobile Equipment Operations, Proc. 25th Annu. Inst. Min. Health Saf. Res. (1994) pp. 99–108Google Scholar
  15. 59.15
    H. Durrant-Whyte, D. Pagac, B. Rogers, M. Stevens, G. Nelmes: Field and service applications-an autonomous straddle carrier for movement of shipping containers-from research to operational autonomous systems, IEEE Robotics Autom. Mag. 14(3), 14–23 (2007)CrossRefGoogle Scholar
  16. 59.16
    J. Chadwick: Autonomous mine truck, Min. Mag. 175(5), 287–288 (1996)Google Scholar
  17. 59.17
    Pav Jordan: Chile's new Gaby copper mine steps into the future (Reuters), (2008)
  18. 59.18
    Komatsu: Autonomous haulage system – Komatsu's pioneering technology deployed at Rio Tinto mine in Australia, (2008)
  19. 59.19
    Caterpillar: Autonomous haulage improves mine site safety, (2013)
  20. 59.20
    Hitachi Construction Machinery: Hitachi chooses South Burnett for three-year automated mine-truck trial, (2013)
  21. 59.21
    J. Barnes, C. Rizos, J. Wang, D. Small, G. Voigt, N. Gambale: Locata: A new positioning technology for high precision indoor and outdoor positioning, Proc. 2003 Int. Symp. GPS/GNSS (2003) pp. 9–18Google Scholar
  22. 59.22
    G.S. Bastos, L.E. Souza, F.T. Ramos, C.H.C. Ribeiro: A single-dependent agent approach for stochastic time-dependent truck dispatching in open-pit mining, IEEE 14th Int. Conf. Intell. Transp. Syst. (ITSC) (2011) pp. 1057–1062Google Scholar
  23. 59.23
    Modular Mining: DISPATCH, (2013)
  24. 59.24
    Komatsu: Modular mining systems unveils the latest in mining technology, (2008)
  25. 59.25
    Caterpillar: Track, manage and assign all types of equipment, across one site or many, (2013)
  26. 59.26
    Wenco: Wenco fleet management systems, (2013)
  27. 59.27
  28. 59.28
  29. 59.29
    S. Alarie, M. Gamache: Overview of solution strategies used in truck dispatching systems for open pit mines, Int. J. Surf. Min. Reclam. Environ. 16(1), 59–76 (2002)CrossRefGoogle Scholar
  30. 59.30
    A. Arelovich, F. Masson, O. Agamennoni, S. Worrall, E. Nebot: Heuristic rule for truck dispatching in open-pit mines with local information-based decisions, Proc. 13th IEEE Int. Conf. Intell. Transp. Syst. (ITSC) (2010) pp. 1408–1414Google Scholar
  31. 59.31
    S.G. Ercelebi, A. Bascetin: Optimization of shovel-truck system for surface mining, J. S. Afr. Inst. Min. Metall. Optim. 109, 433–439 (2009)Google Scholar
  32. 59.32
    R.F. Subtil, D.M. Silva, J.C. Alves: A Practical Approach to Truck Dispatch for Open Pit Mines, Proc. 2011 APCOM Symp. (2011) pp. 765–777Google Scholar
  33. 59.33
    C.H. Ta, J.V. Kresta, J.F. Forbes, H.J. Marquez: A stochastic optimization approach to mine truck allocation, Int. J. Surf. Min. Reclam. Environ. 19(3), 162–175 (2005)CrossRefGoogle Scholar
  34. 59.34
    S.-K. Kim, J.S. Russell: Framework for an intelligent earthwork system. Part I, System architecture, Autom. Constr. 12(1), 1–13 (2003)CrossRefGoogle Scholar
  35. 59.35
    S. Singh: The state of the art in automation of earthmoving, ASCE J. Aerosp. Eng. 10(4), 179–188 (1997)CrossRefGoogle Scholar
  36. 59.36
    S. Singh: State of the art in automation of earthmoving, Proc. Workshop Adv. Geomechatronics (2002)Google Scholar
  37. 59.37
    M. Dunbabin, P. Corke: Autonomous excavation using a rope shovel, J. Field Robotics 23, 379–394 (2006)CrossRefGoogle Scholar
  38. 59.38
    P.J.A. Lever, F.-Y. Wang: Intelligent excavator control system for lunar mining system, J. Aerosp. Eng. 8(1), 16–24 (1995)CrossRefGoogle Scholar
  39. 59.39
    X. Shi, P.J.A. Lever, F.-Y. Wang: Experimental robotic excavation with fuzzy logic and neural networks, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 957–962Google Scholar
  40. 59.40
    W. Richardson-Little, C.J. Damaren: Position accommodation and compliance control for robotic excavation, Proc. IEEE Conf. Control Appl. (2005)Google Scholar
  41. 59.41
    L.E. Bernold: Motion and Path Control for Robotic Excavation, J. Aerosp. Eng. 6(1), 1–18 (1993)CrossRefGoogle Scholar
  42. 59.42
    Q. Ha, M. Santos, Q. Nguyen, D. Rye, H. Durrant-Whyte: Robotic excavation in construction automation, IEEE Robotics Autom. Mag. 9(1), 20–28 (2007)Google Scholar
  43. 59.43
    S. Tafazoli, S.E. Salcudean, K. Hashtudi-Zaad, P.D. Lawrence: Impedance control of a teleoperated excavator, IEEE Trans. Control Syst. Technol. 10(3), 355–367 (2002)CrossRefGoogle Scholar
  44. 59.44
    C.P. Tan, Y.H. Zweiri, K. Althoefer, L.D. Seneviratne: Online soil parameter estimation scheme based on Newton--Raphson method for autonomous excavation, IEEE/ASME Trans. Mechatron. 10(2), 221–229 (2000)CrossRefGoogle Scholar
  45. 59.45
    S. Singh: Learning to predict resistive forces during robotic excavation, Proc. 1995 IEEE Int. Conf. Robotics Autom. (1995) pp. 2102–2107CrossRefGoogle Scholar
  46. 59.46
    J.A. Marshall: Towards Autonomous Excavation of Fragmented Rock: Modelling, Identification and Control, Ph.D. Thesis (Queen's Univ., Kingston 2001)Google Scholar
  47. 59.47
    A.R. Reece: The fundamental equation of earthmoving mechanics, Proc. Inst. Mech. Eng. (1964)Google Scholar
  48. 59.48
    H. Cannon, S. Sanjiv: Models for automated earth moving, Lect. Note. Control Inform. Sci. 250, 163–172 (2000)CrossRefGoogle Scholar
  49. 59.49
    E. Duff: Accurate guidance and measurement for excavators using laser scanners, Techn. Rep. C14043 (ACARP, Brishane 2006)Google Scholar
  50. 59.50
    Leica Geosystems Mining: Jigsaw products: Open image in new window dozer autorip, (2013)
  51. 59.51
    Mining Magazine: Thinking automatically, (2012)
  52. 59.52
    Ry Crozier: Gears up for expansion across Pilbara mines,,rio-tinto-advances-autonomous-drill-project.aspx (2012)
  53. 59.53
    E. Duff, C. Caris, A. Bonchis, K. Taylor, C. Gunn, M. Adcock: The development of a telerobotic rock breaker, Springer Tract. Adv. Robot. 62, 411–420 (2010)Google Scholar
  54. 59.54
    E. Duff, K. Usher, P. Ridley: Swing Loader Traffic Control, Techn. Rep. C13041 (ACARP, Brishane 2006) Google Scholar
  55. 59.55
    B. Owens: Concept Design and Testing of a GPS-less System for Autonomous Shovel-Truck Spotting, Ph.D. Thesis (Queen's Univ., Kingston 2013)Google Scholar
  56. 59.56
    A. Stentz, J. Bares, S. Singh, P. Rowe: A robotic excavator for autonomous truck loading, Auton. Robots 7(2), 175–186 (1999)CrossRefGoogle Scholar
  57. 59.57
    M. Dunbabin, G. Winstanley, P. Corke: Refinement of Automated Dragline Swing Control Algorithms, Techn. Rep. C13040 (ACARP, Brishane 2005)Google Scholar
  58. 59.58
    J. Roberts: Dragline operational enhancements through the use of digital terrain maps, ACARP Report C13034 (2006)Google Scholar
  59. 59.59
    Leica Geosystems Mining: Well positioned, (2013)
  60. 59.60
  61. 59.61
    T. Sathyan, D. Humphrey, M. Hedley: WASP: A system and algorithms for accurate radio localization using low-cost hardware, IEEE Trans. Syst. Man Cybern. C 41(2), 211–222 (2011)CrossRefGoogle Scholar
  62. 59.62
    United States Department of Labor: Mine safety and health administration report, (2010)
  63. 59.63
    B. Clark, S. Worrall, G. Brooker, J. Martinez, E. Nebot: Improving situational awareness with radar information, Proc. 2012 IEEE Intell. Vehicle Symp. (2012) pp. 535–540CrossRefGoogle Scholar
  64. 59.64
    K. Nienhaus, R. Winkel, W. Mayer, A. Gronau, W. Menzel: An experimental study on using electronically scanning microwave radar systems on surface mining machines, Proc. IEEE Radar Conf. (2007) pp. 509–512Google Scholar
  65. 59.65
    G. Agamennoni, J.I. Nieto, E.M. Nebot: Estimation of Multivehicle Dynamics by Considering Contextual Information, IEEE Trans. Robotics 28(4), 855–870 (2012)CrossRefGoogle Scholar
  66. 59.66
    S. Worrall, G. Agamennoni, J.I. Nieto, E.M. Nebot: A context-based approach to vehicle behavior prediction, IEEE Intell. Transp. Syst. Mag. 4(3), 32–44 (2012)CrossRefGoogle Scholar
  67. 59.67
    P.V. Golde: Implementation of drill teleoperation in mine automation, Ph.D. Thesis (McGill Univ., Montréal 1997)Google Scholar
  68. 59.68
    J. Appelgren: Remote control and navigation systems, Min. Constr. Mag. 2, 16–19 (2003)Google Scholar
  69. 59.69
    D. Hunter, D. Wells, K. Chrystall, P. Feighan: Achieving effective telerobotic control of industrial equipment, CIM Bull. 89(1002), 83–88 (1996)Google Scholar
  70. 59.70
    J. Larsson, M. Broxvall, A. Saffiotti: An evaluation of local autonomy applied to teleoperated vehicles in underground mines, Proc. 2010 IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1745–1752CrossRefGoogle Scholar
  71. 59.71
    K. Amdahl, M. Lundström: Automatic truck saves money underground, World Mining 160, 40–44 (1972)Google Scholar
  72. 59.72
    G.D. Brophey: Vehicle guidance system, CA 2041373A1 (1991)Google Scholar
  73. 59.73
    R. Hurteau, M. St-Amant, Y. Laperriere, G. Chevrette: Optical guidance system for underground mine vehicles, Proc. 1992 IEEE Conf. Robotics Autom. (1992) pp. 639–644CrossRefGoogle Scholar
  74. 59.74
    J.F. Purchase, R.A. Poole: Guidance system for automated vehicles, and guidance strip for use therewith, US 6163745A (2000)Google Scholar
  75. 59.75
    U. Wiklund, U. Andersson, K. Hyypä: AGV navigation by angle measurements, Proc. 6th Int. Conf. Autom. Guided Veh. Syst. (1988) pp. 199–212Google Scholar
  76. 59.76
    S. Scheding, G. Dissanayake, E.M. Nebot, H.F. Durrant-Whyte: An experiment in autonomous navigation of an underground mining vehicle, IEEE Trans. Robotics Autom. 15(1), 85–95 (1999)CrossRefGoogle Scholar
  77. 59.77
    L.A. Bloomquist, E.H. Hinton: Autonomous vehicle guidance system, US 5999865A (1999)Google Scholar
  78. 59.78
    P. Debanné, J.-Y. Hervé, P. Cohen: Global self-localization of a robot in underground mines, Proc. 1997 IEEE Int. Conf. Syst. Man Cybern. (1997) pp. 4400–4405Google Scholar
  79. 59.79
    J.M. Roberts, E.S. Duff, P.I. Corke: Reactive navigation and opportunistic localization for autonomous underground mining vehicles, Inform. Sci. 145, 127–146 (2002)zbMATHCrossRefGoogle Scholar
  80. 59.80
    J.M. Roberts, E.S. Duff, P.I. Corke, P. Sikka, G.J. Winstanley, J.B. Cunningham: Autonomous control of underground mining vehicles using reactive navigation, Proc. 2000 IEEE Conf. Robotics Autom. (2000) pp. 3790–3795Google Scholar
  81. 59.81
    J. Steele, C. Ganesh, A. Kleve: Control and scale model simulation of sensor-guided LHD mining machines, IEEE Trans. Ind. Appl. 29(6), 1232–1238 (1993)CrossRefGoogle Scholar
  82. 59.82
    J. Larsson, M. Broxvall, A. Saffiotti: A navigation system for automated loaders in underground mines, Proc. 5th Int. Conf. Field Serv. Robotics (2005)Google Scholar
  83. 59.83
    R. Madhavan, M.W.M.G. Dissanayake, H.F. Durrant-Whyte: Autonomous underground navigation of an LHD using a combined ICP-EKF approach, Proc. IEEE Conf. Robotics Autom. (1998) pp. 3703–3708Google Scholar
  84. 59.84
    H. Mäkelä: Overview of LHD navigation without artificial beacons, Robotics Auton. Syst. 36, 21–35 (2001)zbMATHCrossRefGoogle Scholar
  85. 59.85
    J. Larsson, J. Appelgren, J.A. Marshall, T.D. Barfoot: Atlas Copco infrastructureless guidance system for high-speed autonomous underground tramming, Proc. 5th Int. Conf. Exhib. Mass Min. (2008) pp. 585–594Google Scholar
  86. 59.86
    J.A. Marshall, T.D. Barfoot, J. Larsson: Autonomous underground tramming for center-articulated vehicles, J. Field Robotics 25(6–7), 400–421 (2008)CrossRefGoogle Scholar
  87. 59.87
    C. Altafini: A path-tracking criterion for an LHD articulated vehicle, Int. J. Robotics Res. 18(5), 435–441 (1999)CrossRefGoogle Scholar
  88. 59.88
    A. Hemami, V. Polotski: Problem formulation for path tracking automation of low speed articulated vehicles, Proc. IEEE Int. Conf. Control Appl. (1996) pp. 697–702Google Scholar
  89. 59.89
    V. Polotski: New reference point for guiding an articulated vehicle, Proc. IEEE Int. Conf. Control Appl. (2000) pp. 455–460Google Scholar
  90. 59.90
    P. Ridley, P. Corke: Autonomous control of an underground mining vehicle, Proc. 2001 Austr. Conf. Robotics Autom. (2001) pp. 26–31Google Scholar
  91. 59.91
    R.M. DeSantis: Modeling and path-tracking for a load-haul-dump mining vehicle, J. Dyn. Syst. Meas. Control 119, 40–47 (1997)zbMATHCrossRefGoogle Scholar
  92. 59.92
    S. Scheding, G. Dissanayake, E. Nebot, H. Durrant-Whyte: Slip modelling and aided inertial navigation of an LHD, Proc. IEEE Int. Conf. Robotics Autom. (1997) pp. 1904–1909CrossRefGoogle Scholar
  93. 59.93
    G.B. Smith, R.J. Butcher, A. Uzbekova, E. Mort, A. Clement: Case study comparison of teleremote and autonomous assist underground loader technology at the Kanowna Belle Mine, Proc. 11th AusIMM Underground Operators' Conference (2001) pp. 305–312Google Scholar
  94. 59.94
    B. Cook, D. Burger, L. Alberts, R. Grobler: Automated loading and hauling experiences at De Beers Finsch Mine, Proc. 10th AusIMM Underground Operators' Conference (2010) pp. 231–238Google Scholar
  95. 59.95
    J.A. Marshall, P.F. Murphy, L.K. Daneshmend: Toward Autonomous Excavation of Fragmented Rock: Full-Scale Experiments, IEEE Trans. Autom. Sci. Eng. 5(3), 562–566 (2008)CrossRefGoogle Scholar
  96. 59.96
    S. Singh: Synthesis of Tactical Plans for Robotic Excavation, Ph.D. Thesis (Robotics Institute Carnegie Mellon Univ., Pittsburgh 1995)Google Scholar
  97. 59.97
    Q. Ji, R.L. Sanford: Autonomous excavation of fragmented rock using machine vision. In: Emerging Computer Techniques for the Minerals Industry, ed. by B.J. Schneider, D.A. Stanley, C.L. Karr (SME, Littleton 1993) pp. 221–228Google Scholar
  98. 59.98
    M.K. Petty, J. Billingsley, T. Tran-Cong: Autonomous LHD Loading, Proc. Annu. IEEE Conf. Mechatron. Mach. Vis. Pract. (1997) pp. 219–224Google Scholar
  99. 59.99
    H. Takahashi, M. Hasegawa, E. Nakano: Analysis on the resistive forces acting on the bucket of a Load-Haul-Dump machine and a wheel loader in the scooping task, Adv. Robotics 13(2), 97–114 (1999)CrossRefGoogle Scholar
  100. 59.100
    M. Magnusson, H. Almqvist: Consistent pile-shape quantification for autonomous wheel loaders, Proc. 2011 IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011) pp. 4078–4083CrossRefGoogle Scholar
  101. 59.101
    A. Hemami: Fundamental analysis of automatic excavation, J. Aerosp. Eng. 8(4), 175–179 (1995)MathSciNetCrossRefGoogle Scholar
  102. 59.102
    G.W. Mitchell: Longwall mining. In: Australian Coal Mining Practice, ed. by R.J. Kininmouth, E.Y. Baafi (AIMM, Carlton 2005) pp. 340–375Google Scholar
  103. 59.103
    P.B. Reid, M.T. Dunn, D.C. Reid, J.C. Ralston: Real-world automation: New capabilities for underground longwall mining, Proc. Austr. Conf. Robotics Autom. (2010)Google Scholar
  104. 59.104
    A. Bonchis, E. Duff, J. Roberts, M. Bosse: Robotic explosive charging in mining and construction applications, IEEE Trans. Autom. Sci. Eng. (2013)Google Scholar
  105. 59.105
    D.J. Peterson, T. LaTourette: New Forces at Work in Mining: Industry Views of Critical Technologies (RAND Sci. Techn. Policy Inst., Santa Monica 2001)Google Scholar
  106. 59.106
    J. Peck, J. Gray: The total mining system (TMS): The basis for open pit automation, CIM Bull. 88(993), 38–44 (1995)Google Scholar
  107. 59.107
    G. Schaffer, A. Stentz: Automated Surveying of Mines Using a Laser Rangefinder, Emerg. Comp. Techn. Miner. Ind. Symp. (SME) (1993) pp. 363–370Google Scholar
  108. 59.108
    A. Nuchter, H. Surmann, K. Lingemann, J. Hertzberg, S. Thrun: 6D SLAM with an application in autonomous mine mapping, Proc. 2004 IEEE Int. Conf. Robotics Autom. (2004) pp. 1998–2003Google Scholar
  109. 59.109
    S. Thrun, D. Hahnel, D. Ferguson, D. Montemerlo, R. Triebel, W. Burgard, C. Baker, Z. Omohundro, S. Thayer, W. Whittaker: A system for volumetric robotic mapping of abandoned mines, Proc. 2003 IEEE Int. Conf. Robotics Autom. (2003) pp. 4270–4275Google Scholar
  110. 59.110
    D. Silver, D. Ferguson, A. Morris, S. Thayer: Topological exploration of subterranean environments, J. Field Robotics 23(6/7), 395–415 (2006)CrossRefGoogle Scholar
  111. 59.111
    M. Magnusson, A. Lilienthal, T. Duckett: Scan registration for autonomous mining vehicles using 3D-NDT, J. Field Robotics 24(10), 803–827 (2007)CrossRefGoogle Scholar
  112. 59.112
    R. Zlot, M. Bosse: Efficient large-scale 3D mobile mapping and surface reconstruction of an underground mine, Proc. Int. Conf. Field Serv. Robotics (2012)Google Scholar
  113. 59.113
    Garmin Ltd.: What is GPS?, (1996)
  114. 59.114
    F. van Diggelen: Indoor GPS theory and implementation, Proc. IEEE Position Loc. Navig. Symp. (2002) pp. 240–247Google Scholar
  115. 59.115
    H. Niwa, K. Kodaka, Y. Sakamoto, M. Otake, S. Kawaguchi, K. Kujii, Y. Kanemori, S. Sugano: GPS-based indoor positioning system with multi-channel pseudolite, Proc. IEEE Int. Conf. Robotics Autom. (2008) pp. 905–910Google Scholar
  116. 59.116
    U. Artan, J.A. Marshall, N.J. Lavigne: Robotic mapping of underground mine passageways, Trans. IMM A: Min. Technol. 120(1), 18–24 (2011)Google Scholar
  117. 59.117
    E. Bartsch, M. Laine, M. Anderson: The application and implementation of optimized mine ventilation on demand (OMVOD) at the Xstrata Nickle Rim South Mine, Sudbury, Ontario, Proc. 13th U.S./N. Am. Mine Venti. Symp. (2010) pp. 1–15Google Scholar
  118. 59.118
    J.C. Ralston, C.O. Hargrave, D.W. Hainsworth: Localisation of mobile underground mining equipment using wireless ethernet, Proc. Ind. Appl. Conf. (2005) pp. 225–230Google Scholar
  119. 59.119
    M.M. Atia, A. Noureldin, J. Georgy, M. Korenberg: Bayesian filtering based WiFi/INS integrated navigation solution for GPS-denied environments, Navigation 58(2), 111–125 (2011)CrossRefGoogle Scholar
  120. 59.120
    R. Wenger: La balise de positionnement U-GPS (Underground-GPS), ISSKA Rapport Annuel (Swiss Institute for Speleology and Karst Studies, La Chaux-de-Fonds 2004), pp. 13–14Google Scholar
  121. 59.121
    J. Chadwick: GPS for underground operations: Great potential for controlling block caves, saving trapped miners and machine automation, (2008)
  122. 59.122
    J.A. Marshall: Navigating the advances in underground navigation, CIM Mag. 5(4), 20–21 (2010)Google Scholar
  123. 59.123
    N.J. Lavigne, J.A. Marshall: A landmark-bounded method for large-scale underground mine mapping, J. Field Robotics 29(6), 861–879 (2012)CrossRefGoogle Scholar
  124. 59.124
    D. Lynas, T. Horberry: Human factor issues with automated mining equipment, Ergonomics Open J. 4, 74–80 (2011)CrossRefGoogle Scholar
  125. 59.125
    IREDES: IREDES – International rock excavation data exchange standard, (2013)
  126. 59.126
    International Standards Organisation: ISO/NP 17757 earth-moving machinery – Autonomous machine safety, (2012)
  127. 59.127
    D. Hambling: Next-Gen coal mining rescue robot, popular mechanics, (2010)
  128. 59.128
    R.R. Murphy, J. Kravitz, S. Stover, R. Shoureshi: Mobile robots in mine rescue and recovery, IEEE Robotics Autom. Mag. 16(2), 91–103 (2009)CrossRefGoogle Scholar
  129. 59.129
    D.W. Hainsworth: Teleoperation user interfaces for mining robotics, Auton. Robots 11(1), 19–28 (2001)zbMATHCrossRefGoogle Scholar
  130. 59.130
    A. MacDonald, E. Welsch: Robotics advance ocean floor mining ventures, (2012)
  131. 59.131
  132. 59.132
    M. Dunbabin, P. Corke, G. Winstanley, J. Roberts: Off-world robotic excavation for large-scale habitat construction and resource extraction, to boldly go where no human-robot team has gone before, AAAI Spring Symp. (2006)Google Scholar
  133. 59.133
    J.E. Moores, R. Francis, M. Mader, G.R. Osinski, T. Barfoot, N. Barry, G. Basic, M. Battler, M. Beauchamp, S. Blain, M. Bondy, R.-D. Capitan, A. Chanou, J. Clayton, E. Cloutis, M. Daly, C. Dickinson, H. Dong, R. Flemming, P. Furgale, J. Gammel, N. Gharfoor, M. Hussein, R. Grieve, H. Henrys, P. Jaziobedski, A. Lambert, K. Leung, C. Marion, E. McCullough, C. McManus, C.D. Neish, H.K. Ng, A. Ozaruk, A. Pickersgill, L.J. Preston, D. Redman, H. Sapers, B. Shankar, A. Singleton, K. Souders, B. Stenning, P. Stooke, P. Sylvester, L. Tornabene: A mission control architecture for robotic lunar sample return as field tested in an analogue deployment to the sudbury impact structure, Adv. Space Res. 50(12), 1666–1686 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joshua A. Marshall
    • 1
    Email author
  • Adrian Bonchis
    • 2
  • Eduardo Nebot
    • 3
  • Steven Scheding
    • 4
  1. 1.The Robert M. Buchan Department of MiningQueen’s UniversityKingstonCanada
  2. 2.Department of Autonomous SystemsCSIROPullenvaleAustralia
  3. 3.Department of Aerospace, Mechanical and Mechatronic EngineeringUniversity of SydneySydneyAustralia
  4. 4.Rio Tinto Centre for Mine AutomationUniversity of SydneySydneyAustralia

Personalised recommendations