Skip to main content

Robotics in Construction

  • Chapter

Part of the Springer Handbooks book series (SHB)

Abstract

This chapter introduces various construction automation concepts that have been developed over the past few decades and presents examples of construction robots that are in current use (as of 2006) and/or in various stages of research and development. Section 57.1 presents an overview of the construction industry, which includes descriptions of the industry, the types of construction, and the typical construction project. The industry overview also discusses the concept of automation versus robotics in construction and breaks down the concept of robotics in construction into several levels of autonomy as well as other categories. Section 57.2 discusses some of the offsite applications of robotics in construction (such as for prefabrication), while Sect. 57.3 discusses the use of robots that perform a single task at the construction site. Section 57.4 introduces the concept of an integrated robotized construction site in which multiple robots/machines collaborate to build an entire structure. Section 57.5 discusses unsolved technical problems in construction robotics, which include interoperability, connection systems, tolerances, and power and communications. Finally, Sect. 57.6 discusses future directions in construction robotics and Sect. 57.7 gives some conclusions and suggests resources for further reading.

Keywords

  • Construction Industry
  • Construction Project
  • Construction Site
  • Material Handling
  • Building Component

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-32552-1_57
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-32552-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 57.1
Fig. 57.2
Fig. 57.3
Fig. 57.4
Fig. 57.5
Fig. 57.6
Fig. 57.7
Fig. 57.8
Fig. 57.9
Fig. 57.10a,b
Fig. 57.11
Fig. 57.12a,b
Fig. 57.13
Fig. 57.15
Fig. 57.14
Fig. 57.16
Fig. 57.17
Fig. 57.18
Fig. 57.19
Fig. 57.20a,b
Fig. 57.21a,b
Fig. 57.22
Fig. 57.23a–c
Fig. 57.24a–c
Fig. 57.25a–f
Fig. 57.26a–c
Fig. 57.27a–c
Fig. 57.28
Fig. 57.29a–c
Fig. 57.30a,b
Fig. 57.31a,b
Fig. 57.32
Fig. 57.33
Fig. 57.34a,b

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

ACBS:

automatic constructions building system

ATLSS:

advanced technology for large structural systems

CAD:

computer-aided design

CAM:

computer-aided manufacturing

CIC:

computer integrated construction

CNC:

computer numerical control

ERP:

enterprise resource planning

EU:

European Union

GDP:

gross domestic product

GPS:

global positioning system

GVA:

gross value added

I3CON:

industrialized, integrated, intelligent, construction

ICT:

information and communication technology

MCP:

magazining, cleaning, plotting

PCM:

programmable construction machine

ROCCO:

robot construction system for computer integrated construction

ROD:

robot oriented design

SMAS:

solid material assembly system

References

  1. E. Ginzberg: The mechanization of work, Sci. Am. 247(3), 66–75 (1982)

    CrossRef  Google Scholar 

  2. US Census Bureau: Value of Construction Put in Place – Seasonally Adjusted Annual Rate (U.S. Census Bureau, Washington DC 2012), http://www.census.gov/

  3. Bureau of Labor Statistics: Industries at a Glance: Construction: NAICS 23 (US Department of Labor, Washington DC 2012), http://www.bls. gov/iag/tgs/iag23.htm

  4. US Census Bureau: Statistics of U.S. Businesses (U.S. Census Bureau, Washington DC 2012), http://www.census.gov/csd/susb/

  5. European Commission: Eurostat Regional Yearbook 2012 (Publications Office of the European Union, Luxembourg 2012), http://ec.europa.eu/eurostat/web/products-statistical-books/-/KS-HA-12-001

  6. Statistics Bureau, Ministry of Internal Affairs and Communications: Statistical Handbook of Japan (Statistics Bureau, Tokyo 2012), http://www.stat.go.jp/english/data/handbook/index.htm

  7. National Bureau of Statistics of China: The Results of Preliminary Verified GDP for the First Three Quarters in 2012 (National Bureau of Statistics of China, Beijing 2012) http://www.stats.gov.cn/english/pressrelease/201211/t20121102_72217.html

  8. National Bureau of Statistics of China: China Statistical Yearbook (China Statistics Press, Beijing 2012), http://www.stats.gov.cn/tjsj/ndsj/2012/indexeh.htm

  9. D. Crosthwaite: The global construction market: A cross-sectional analysis, Constr. Manag. Econ. 18(5), 619–627 (2000)

    CrossRef  Google Scholar 

  10. D.W. Halpin, R.W. Woodhead: Construction Management, 2nd edn. (Wiley, New York 1998)

    Google Scholar 

  11. K.S. Saidi: Possible Applications of Handheld Computers to Quantity Surveying, Dissertation (Univ. Texas, Austin 2002)

    Google Scholar 

  12. T. Greaves, B. Jenkins: Capturing Existing Conditions with Terrestrial Laser Scanning: A Report on Opportunities, Challenges and Best Practices for Owners, Operators, Engineering/Construction Contractors and Surveyors of Built Assets and Civil Infrastructure (Spar Point Research, Danvers 2004)

    Google Scholar 

  13. J.G. Everett, A.H. Slocum: Automation and robotics opportunities – Construction versus manufacturing, J. Constr. Eng. Manag. ASCE 120(2), 443–451 (1994)

    CrossRef  Google Scholar 

  14. L.A. Demsetz: Task identification for construction automation, 6th Int. Symp. Autom. Robotics Constr. (1989) pp. 95–102

    Google Scholar 

  15. R. Kangari, D.W. Halpin: Potential robotics utilization in construction, J. Constr. Eng. Manag. 115(1), 126–143 (1989)

    CrossRef  Google Scholar 

  16. R.L. Tucker: High payoff areas for automation applications, 6th Int. Symp. Autom. Robotics Constr. (1988) pp. 9–16

    Google Scholar 

  17. L. Cousineau, N. Miura: Construction Robots: The Search for New Building Technology in Japan (ASCE, Reston 1998)

    Google Scholar 

  18. J.G. Everett, H. Saito: Construction automation: Demands and satisfiers in the United States and Japan, J. Constr. Eng. Manag. ASCE 122(2), 147–151 (1996)

    CrossRef  Google Scholar 

  19. M. Taylor, S. Wamuziri, I. Smith: Automated construction in Japan, Proc. ICE Civil Eng. 156(1), 34–41 (2003)

    Google Scholar 

  20. J. Maeda: Current research and development and approach to future automated construction in Japan, Proc. Constr. Res. Congr. (2005) p. 2403

    Google Scholar 

  21. C. Balaguer, M. Abderrahim, J.M. Navarro, S. Boudjabeur, P. Aromaa, K. Kahkonen, S. Slavenburg, D. Seward, T. Bock, R. Wing, B. Atkin: FutureHome: An integrated construction automation approach, IEEE Robotics Autom. Mag. 9(1), 55–66 (2002)

    CrossRef  Google Scholar 

  22. Y. Maruyama, Y. Iwase, K. Koga, J. Yagi, H. Takada, N. Sunaga, S. Nishigaki, T. Ito, K. Tamaki: Development of virtual and real-field construction management systems in innovative, intelligent field factory, Autom. Constr. 9(5/6), 503–514 (2000)

    CrossRef  Google Scholar 

  23. C. Balaguer: Soft robotics concept in construction industry, World Autom. Congr. (2004) pp. 517–522

    Google Scholar 

  24. K.A. Reed: The role of the CIMSteel integration standards in automating the erection and surveying of structural steelwork, 19th Int. Symp. Autom. Robotics Constr. SP989 (NIST, Gaithersburg 2002)

    Google Scholar 

  25. N.J. Shih: The application of a 3-D scanner in the representation of building construction site, ISARC 2002: 19th Int. Symp. Autom. Robotics Constr. (2002) pp. 337–342

    Google Scholar 

  26. B. Akinci, F. Boukamp, C. Gordon, D. Huber, C. Lyons, K. Park: A formalism for utilization of sensor systems and integrated project models for active construction quality control, Autom. Constr. 15(2), 124–138 (2006)

    CrossRef  Google Scholar 

  27. G.S. Cheok, W.C. Stone: Non-intrusive scanning technology for construction assessment, IAARC/IFAC/IEEE. Int. Symp. (1999) pp. 645–650

    Google Scholar 

  28. K. McKinney, M. Fischer: Generating, evaluating and visualizing construction schedules with CAD tools, Autom. Constr. 7(6), 433–447 (1998)

    CrossRef  Google Scholar 

  29. B. Akinci, M. Fischer, J. Kunz: Automated generation of work spaces required by construction activities, J. Constr. Eng. Manag. ASCE 128(4), 306–315 (2002)

    CrossRef  Google Scholar 

  30. V. Kamat, R. Lipman: Evaluation of standard product models for supporting automated erection of structural steelwork, Autom. Constr. 16(2), 232–241 (2006)

    CrossRef  Google Scholar 

  31. C.M. Eastman: Building Product Models (CRC, Boca Raton 1999)

    Google Scholar 

  32. T. Bock, A. Malone: The Integrated Project ManuBuild of the EU, ISARC 2006 23rd Int. Symp. Autom. Robotics Constr. (2006) pp. 361–364

    Google Scholar 

  33. G. Aouad, J. Kirkham, P. Brandon, F. Brown, G. Cooper, S. Ford, R. Oxman, M. Sarshar, B. Young: Information modeling in the construction industry – The information engineering approach, Constr. Manag. Econ. 11(5), 384–397 (1993)

    CrossRef  Google Scholar 

  34. G. Beer: Tunconstruct: A new european initiative, T&T Int. FEV (2006) pp. 21–23

    Google Scholar 

  35. H.M. Huang: Autonomy Levels for Unmanned Systems (ALFUS) Framework Volume I: Terminology Version 2.0, NIST Special Publication 1011-I-2.0 (NIST, Gaithersburg 2008), http://www.nist.gov/el/isd/ks/upload/NISTSP_1011-I-2-0.pdf

    CrossRef  Google Scholar 

  36. Y.F. Ho, H. Masuda, H. Oda, L.W. Stark: Distributed control for tele-operations, IEEE/ASME Trans. Mechatron. 5(2), 100–109 (2000)

    CrossRef  Google Scholar 

  37. S. Singh: State of the art in automation of earthmoving, ASCE J. Aerosp. Eng. 10(4), 179–188 (2002)

    CrossRef  Google Scholar 

  38. H. Quang, M. Santos, N. Quang, D. Rye, H. Durrant-Whyte: Robotic excavation in construction automation, IEEE Robotics Autom. Mag. 9(1), 20–28 (2002)

    CrossRef  Google Scholar 

  39. J. Albus, R. Bostelman, N. Dagalakis: The NIST RoboCrane, J. Robotic Syst. 10(5), 709–724 (1993)

    CrossRef  Google Scholar 

  40. K.S. Saidi, A.M. Lytle, W.C. Stone, N.A. Scott: Developments toward automated construction, NIST Interagency Rep. 7264 (NIST, Gaithersburg 2005)

    Google Scholar 

  41. S.C. Kang, E. Miranda: Physics based model for simulating the dynamics of tower cranes, 10th Int. Conf. Comput. Civil Build. Eng. (ICCCBE) (2004)

    Google Scholar 

  42. Weckenmann LLC: Machinery and plant systems for the production of precast concrete elements, http://www.weckenmann.com/en

  43. M. Damlund, S. Goth, P. Hasle, K. Munk: Low back pain and early retirement among Danish semi-skilled construction workers, Scand. J. Work, Environ. Health 8(1982), 100–104 (1982)

    Google Scholar 

  44. S. Schneider, P. Susi: Ergonomics and construction: A review of potential hazards in new construction, Am. Ind. Hyg. Assoc. J. 55, 635–649 (1994)

    CrossRef  Google Scholar 

  45. T. Bock: Robot Oriented Design (Shokokusha Publishing, Tokyo 1988)

    Google Scholar 

  46. T. Bock: A study on Robot-Oriented Construction and Building System, Thesis for Doctorate of Engineering, Report Number 108066 (University of Tokyo, Tokyo 1989)

    Google Scholar 

  47. T. Bock, T. Linner: Robot-Oriented Design and Management (Cambridge Univ. Press, Cambridge 2014)

    Google Scholar 

  48. T. Bock: The Japanese approach of SMAS-solid material assembly system and the European approach of ROCCO-robotic assembly system for computer integrated construction, EC-Japan Conf. (Reading University, Reading 1995)

    Google Scholar 

  49. G. Wickström, T. Niskanen, H. Riihimäki: Strain on the back in concrete reinforcement work, Br. J. Ind. Med. 42(4), 233–239 (1985)

    Google Scholar 

  50. H. Benckert: Mechydronic for boom control on truck-mounted concrete pumps, Tech. Symp. Constr. Equip. Technol. 2003 (2003)

    Google Scholar 

  51. F. Gebhart, G. Mayer, F. Ott, A. Barren, B. Heid, W. Schencking, E. Andres Puente, T. Bock, A. Delchambre: Final report of the ROCCO project, ESPRIT III program of the European Union (1998)

    Google Scholar 

  52. T. Bock: Plenary paper: State of the art of automation and robotics in construction in Germany ROCCO: Robotic assembly system for computer integrated construction, 13th ISARC, Int. Conf. Autom. Robotics Constr., Tokio (1996)

    Google Scholar 

  53. F. Peyret: The Achievements of the computer integrated road construction project, 17th IAARC/CIB/ IEEE/IFAC/IFR Int. Symp. Autom. Robotics Constr. (ISARC) (2000)

    Google Scholar 

  54. Commonwealth Scientific, Industrial Research Organisation: Mining Robotics Project (CSIRO, Clayton South 2006), https://wiki.csiro.au/display/ASL/Dragline+Automation

  55. D.A. Bradley, D.W. Seward: The development, control and operation of an autonomous robotic excavator, J. Intell. Robotic Syst. 21(1), 73–97 (1998)

    CrossRef  Google Scholar 

  56. P. Coal, C. Hughes: Project C8001: Introduction of Autonomous Haul Trucks. Final Report (Australian Coal Research, Brisbane 1997)

    Google Scholar 

  57. C. Haas, K. Saidi, Y. Cho, W. Fagerlund, H. Kim, Y. Kim: Implementation of an Automated Road Maintenance Machine (ARMM), Center for Transportation Research, Project Summary Report (NIST Interagency Rep., 7264 2005)

    Google Scholar 

  58. D.A. Bennett, X. Feng, S.A. Velinsky: AHMCT automated crack sealing program and the operator controlled crack sealing machine, Transp. Res. Board Annu. Meet. (2003)

    Google Scholar 

  59. A.M. Lytle, K.S. Saidi: NIST research in autonomous construction, Auton. Robots 22(3), 211–221 (2007)

    CrossRef  Google Scholar 

  60. T. Linner: Automated and Robotic Construction: Integrated Automated Construction Sites, Dissertation (Universität München, München 2013)

    Google Scholar 

  61. T. Bock, T. Linner: Logistics, Site Automation and Robotics: Automated/Robotic On-site Factories (Cambridge Univ. Press, Cambridge 2014)

    Google Scholar 

  62. M.P. Gallaher, R.E. Chapman: Cost Analysis of Inadequate Interoperability in the US Capital Facilities Industry (National Institute of Standards and Technology, Gaithersburg 2004), US Dept. of Commerce, Technology Administration

    CrossRef  Google Scholar 

  63. K.B. Lee, M.E. Reichardt: Open standards for homeland security sensor networks, Instrum. Meas. Mag. IEEE 8(5), 14–21 (2005)

    CrossRef  Google Scholar 

  64. E.F. Begley, M.E. Palmer, K.A. Reed: Semantic Mapping Between IAI ifcXML and FIATECH AEX Models for Centrifugal Pumps (National Institute of Standards and Technology, Gaithersburg 2005)

    CrossRef  Google Scholar 

  65. R. Fleischman, B.V. Viscomi, L.W. Lu: Development, analysis and experimentation of ATLSS connections for automated construction, Proc. 1st World Conf. Steel Struct. (1992)

    Google Scholar 

  66. S. Garrido, M. Abderrahim, A. Gimenez, C. Balaguer: Anti-swinging input shaping control of an automatic construction crane, IEEE Trans. Autom. Sci. Eng. 5(3), 549–557 (2007)

    CrossRef  Google Scholar 

  67. T. Bock: Montage und Demontage im Holzbau mittels Schnellverschlüssen, BMBF Projektnummer: 0339835/5

    Google Scholar 

  68. J.K. Latta: Inaccuracies in Construction, Canadian Building Digest 171 (Institute for Construction, National Research Council Canada, Ottawa 1975), http://web.mit.edu/parmstr/Public/NRCan/CanBldgDigests/cbd171_e.html

    Google Scholar 

  69. A.M. Lytle, K.S. Saidi (Eds.): Proceedings of the 23rd ISARC (International Association for Automation and Robotics in Construction, Tokyo 2006)

    Google Scholar 

  70. A.M. Lytle, K.S. Saidi (Eds.): Automated Steel Construction Workshop 2002 (National Institute of Standards and Technology, Gaithersburg 2004)

    Google Scholar 

  71. Y. Miyatake: SMART system: A full-scale implementation of computer integrated construction, 10th Int. Symp. Autom. Robotics Constr. (1993)

    Google Scholar 

  72. C. Lindfors, P. Chang, W. Stone: Survey of construction metrology options for AEC industry, J. Aerosp. Eng. 12, 58 (1999)

    CrossRef  Google Scholar 

  73. S. Kang, D. Tesar: A novel 6-DoF measurement tool with indoor GPS for metrology and calibration of modular reconfigurable robots, IEEE ICM Int. Conf. Mechatron., Istanbul (2004)

    Google Scholar 

  74. L.E. Bernold, L. Venkatesan, S. Suvarna: Equipment mounted multi-sensory system to locate pipes, Pipelines 130, 112 (2004)

    Google Scholar 

  75. D.A. Willett, K.C. Mahboub, B. Rister: Accuracy of ground-penetrating radar for pavement-layer thickness analysis, J. Transp. Eng. 132, 96–103 (2006)

    CrossRef  Google Scholar 

  76. C.L. Barnes, J.F. Trottier: Effectiveness of ground penetrating radar in predicting deck repair quantities, J. Infrastruct. Syst. 10, 69 (2004)

    CrossRef  Google Scholar 

  77. J.A. Huisman, S.S. Hubbard, J.D. Redman, A.P. Annan: Measuring soil water content with ground penetrating radar – A review, Vadose Zone J. 2(4), 476–491 (2003)

    CrossRef  Google Scholar 

  78. G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, R.O. Claus, S.F. Masri, R.E. Skelton, T.T. Soong, B.F. Spencer, J.T.P. Yao: Structural control: Past, present, and future, J. Eng. Mech. 123(9), 897–971 (1997)

    CrossRef  Google Scholar 

  79. US Department of Transportation: Maturity Meters: A Concrete Success, ed. by L. Pope (Federal Highway Administration (FHWA), Washington 2002)

    Google Scholar 

  80. S.V. Ramaiah, B.F. McCullough, T. Dossey: Estimating in situ Strength of Concrete Pavements Under Various Field Conditions (Univ. of Texas, Austin 2001), Center Transport. Res.

    Google Scholar 

  81. J. Song, C. Haas, C. Caldas, E. Ergen, B. Akinci, C.R. Wood, J. Wadephul: Field Trials of RFID Technology for Tracking Fabricated Pipe – Phase II (FIATECH, Austin 2003), http://www.fiatech.org/images/stories/techprojects/project_deliverables/SC_FieldTrialsofRFIDTechnologyforTrackingFabricatedPipe_PhaseII.pdf

    Google Scholar 

  82. J. Song, C.T. Haas, C. Caldas, E. Ergen, B. Akinci: Automating the task of tracking the delivery and receipt of fabricated pipe spools in industrial projects, Autom. Constr. 15(2), 166–177 (2006)

    CrossRef  Google Scholar 

  83. J. Aksoy, I. Chan, K. Guidry, J. Jones, C. R. Wood: Materials and Asset Tracking Using RFID: A Preparatory Field Pilot Study (FIATECH, Austin 2004), http://www.fiatech.org

  84. J. Kang, P. Woods, J. Nam, C.R. Wood: Field Tests of RFID Technology for Construction Tool Management (FIATECH, Austin 2005), http://www.fiatech.org

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel S. Saidi .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Obayashi ACBS (Automatic Constructions Building System) available from http://handbookofrobotics.org/view-chapter/57/videodetails/272

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saidi, K.S., Bock, T., Georgoulas, C. (2016). Robotics in Construction. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_57

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)