Skip to main content

Robotics in Agriculture and Forestry

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Robotics for agriculture and forestry (GlossaryTerm

A&F

) represents the ultimate application of one of our society’s latest and most advanced innovations to its most ancient and important industries. Over the course of history, mechanization and automation increased crop output several orders of magnitude, enabling a geometric growth in population and an increase in quality of life across the globe. Rapid population growth and rising incomes in developing countries, however, require ever larger amounts of A&F output. This chapter addresses robotics for A&F in the form of case studies where robotics is being successfully applied to solve well-identified problems. With respect to plant crops, the focus is on the in-field or in-farm tasks necessary to guarantee a quality crop and, generally speaking, end at harvest time. In the livestock domain, the focus is on breeding and nurturing, exploiting, harvesting, and slaughtering and processing. The chapter is organized in four main sections. The first one explains the scope, in particular, what aspects of robotics for A&F are dealt with in the chapter. The second one discusses the challenges and opportunities associated with the application of robotics to A&F. The third section is the core of the chapter, presenting twenty case studies that showcase (mostly) mature applications of robotics in various agricultural and forestry domains. The case studies are not meant to be comprehensive but instead to give the reader a general overview of how robotics has been applied to A&F in the last 10 years. The fourth section concludes the chapter with a discussion on specific improvements to current technology and paths to commercialization.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

4-D:

four-dimensional

A&F:

agriculture and forestry

CCD:

charge-coupled device

DOF:

degree of freedom

GARNICS:

gardening with a cognitive system

GLS:

global navigation satellite system

GPS:

global positioning system

HMI:

human–machine interaction

N&G:

nursery and greenhouse

NLIS:

national livestock identification scheme

OCPP:

optimal coverage path planning

PID:

proportional–integral–derivative

PWM:

pulse-width modulation

RTK:

real-time kinematics

SLAM:

simultaneous localization and mapping

TFP:

total factor productivity

TOF:

time-of-flight

UAV:

unmanned aerial vehicle

WDVI:

weighted difference vegetation index

WSN:

wireless sensor network

References

  1. J.A. Foley, N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O'Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, S.R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D.P.M. Zaks: Solutions for a cultivated planet, Nature 478, 337–342 (2011)

    Article  Google Scholar 

  2. A. Alleyne: Editor's note: Agriculture and information technology, Natl. Acad. Eng. Bridge, Issue Agric. Inf, Technol. 41(3), 3–4 (2011)

    Google Scholar 

  3. Global Harvest Initiative: The 2012 Global Agricultural Productivity Report, http://goo.gl/GBPvjK

  4. J. Reid: The impact of mechanization on agriculture, Nat. Acad. Eng. Bridge, Issue Agric. Inf. Technol. 41(3), 22–29 (2011)

    Google Scholar 

  5. E.J. Van Henten: Greenhouse mechanization: State of the art and future perspective, Acta Hortic. 710, 55–69 (2006)

    Article  Google Scholar 

  6. S.T. Nuske, S. Achar, T. Bates, S.G. Narasimhan, S. Singh: Yield estimation in vineyards by visual grape detection, IEEE/RSJ Int. Conf. Intell. Robots Syst., San Francisco (2011)

    Google Scholar 

  7. Q. Wang, S.T. Nuske, M. Bergerman, S. Singh: Automated crop yield estimation for apple orchards, Int. Symp. Exp. Robotics, Quebec City (2012)

    Google Scholar 

  8. J. Deere: Integrated AutoTrac System, http://goo.gl/CsxxfL

  9. K. Gallardo, M. Taylor, H. Hinman: 2009 Cost estimates of establishing and producing gala apples in Washington, Washington State University Extension Fact Sheet FS005E, http://goo.gl/BHBZrb (2010)

  10. B. Hamner, M. Bergerman, S. Singh: Results with autonomous vehicles operating in specialty crops, IEEE Int. Conf. Robotics Autom., St. Paul, MN (2012)

    Google Scholar 

  11. G. Giacomelli, N. Castilla, E.J. Van Henten, D.R. Mears, S. Sase: Innovation in greenhouse engineering, Acta Hortic. 801, 75–88 (2008)

    Article  Google Scholar 

  12. C.W. Bac, E.J. Henten van, J. Hemming, Y. Edan: Harvesting robots for high-value crops: State-of-the-art review and challenges ahead, J. Field Robotics 31(6), 888–911 (2012)

    Article  Google Scholar 

  13. J.C. Noordam, J. Hemming, C. Heerde van, F. Golbach, R. Soest van, E. Wekking: Automated rose cutting in greenhouses with 3D vision and robotics: Analysis of 3D vision techniques for stem detection, Acta Hortic. 691, 885–892 (2005)

    Article  Google Scholar 

  14. T. Rath, M. Kawollek: Robotic harvesting of Gerbera Jamesonii based on detection and three-dimensional modeling of cut flower pedicels, Comput. Electron. Agric. 66, 85–92 (2009)

    Article  Google Scholar 

  15. R. Berenstein, O.B. Shahar, A. Shapiro, Y. Edan: Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer, Intell. Serv. Robotics 3, 233–243 (2010)

    Article  Google Scholar 

  16. E.J. Van Henten, B.A.J. Van Tuijl, G.J. Hoogakker, M.J. Van Der Weerd, J. Hemming, J.G. Kornet, J. Bontsema: An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system, Biosyst. Eng. 94, 317–323 (2006)

    Article  Google Scholar 

  17. M. Monta, N. Kondo, Y. Shibano: Agricultural robot in grape production system, Int. Conf. Robotics Autom. (1995)

    Google Scholar 

  18. Wikipedia: Controlled Traffic Farming, http://goo.gl/FODY04

  19. J. Jin, L. Tang: Coverage path planning on three-dimensional terrain for arable farming, J. Field Robotics 28(3), 424–440 (2011)

    Article  Google Scholar 

  20. D.C. Slaughter, D.K. Giles, D. Downey: Autonomous robotic weed control systems: A review, Comput. Electron. Agric. 61, 63–78 (2008)

    Article  Google Scholar 

  21. F.K. Van Evert, J. Samsom, G. Polder, M. Vijn, H.-J. Dooren van, A. Lamaker, G.W.A.M. Heijden van der, C. Kempenaar, T. Zalm van der, B. Lotz: A robot to detect and control broad-leaved dock (Rumex obtusifolius L.) in grassland, J. Field Robotics 28, 264–277 (2011)

    Article  Google Scholar 

  22. G. Polder, F.K. Van Evert, A. Lamaker, A. De Jong, G.W.A.M. Van der Heijden, L.A.P. Lotz, T. Van der Zalm, C. Kempenaar: Weed detection using textural image analysis, 6th Bienn. Conf. Eur. Fed. IT Agric. (EFITA), Glasgow (2007), available online at http://edepot.wur.nl/28203

    Google Scholar 

  23. F.K. Van Evert, G. Polder, G.W.A.M. Van der Heijden, C. Kempenaar, L.A.P. Lotz: Real-time, vision-based detection of Rumex obtusifolius L. in grassland, Weed Res. 49, 164–174 (2009)

    Article  Google Scholar 

  24. H. Böhm, J. Finze: Überprüfung der Effektivität der maschinellen Ampferregulierung im Grünland mittels WUZI unter differenzierten Standortbedingungen [Testing the effectiveness of mechanical control of docks in grassland with the WUZI under a variety of conditions.], http://goo.gl/BVdqgy (2004)

  25. A.T. Nieuwenhuizen, J.W. Hofstee, E.J. Henten van: Adaptive detection of volunteer potato plants in sugar beet fields, Precis. Agric. 11, 433–447 (2009)

    Article  Google Scholar 

  26. A.T. Nieuwenhuizen, J.W. Hofstee, J.C. Zande van de, J. Meuleman, E.J. Henten van: Classification of sugar beet and volunteer potato reflection spectra with a neural network and statistical discriminant analysis to select discriminative wavelengths, Comput. Electron. Agric. 73, 146–153 (2010)

    Article  Google Scholar 

  27. A.T. Nieuwenhuizen, J.W. Hofstee, E.J. Henten van: Performance evaluation of an automated detection and control system for volunteer potatoes in sugar beet fields, Biosyst. Eng. 107, 46–53 (2010)

    Article  Google Scholar 

  28. T. Bakker, H. Wouters, K. Van Asselt, J. Bontsema, L. Tang, J. Müller, G. Van Straten: A vision based row detection system for sugar beet, Comput. Electron. Agric. 60(1), 87–95 (2008)

    Article  Google Scholar 

  29. T. Bakker, K. Van Asselt, J. Bontsema, J. Müller, G. Van Straten: A path following algorithm for mobile robots, Auton. Robots 29(1), 85–97 (2010)

    Article  Google Scholar 

  30. T. Bakker, K. Asselt van, J. Bontsema, J. Müller, G. Straten van: Autonomous navigation using a robot platform in a sugar beet field, Biosyst. Eng. 109(4), 357–368 (2011)

    Article  Google Scholar 

  31. J. Katupitiya, R. Eaton, T. Yaqub: Systems engineering approach to agricultural automation: New developments, 1st Annual IEEE Syst. Conf. (2007) pp. 298–304

    Google Scholar 

  32. D. Kohanbash, A. Valada, G.A. Kantor: Irrigation control methods for wireless sensor network, Am. Soc. Agric. Biol. Eng. Annual Meeting (2012), available online at http://goo.gl/3NJyXb

    Google Scholar 

  33. S. Singh, M. Bergerman, J. Cannons, B. Grocholsky, B. Hamner, G. Holguin, L. Hull, V. Jones, G. Kantor, H. Koselka, G. Li, J. Owen, J. Park, W. Shi, J. Teza: Comprehensive automation for specialty crops: Year 1 results and lessons learned, J. Intell. Serv. Robotics, Special Issue Agric, Robotics 3(4), 245–262 (2010)

    Google Scholar 

  34. B. Davis: CMU-led automation program puts robots in the field, AUVSI's Unmanned Syst.: Mission Crit. 2, 38–40 (2012)

    Google Scholar 

  35. R. Lenain, J. Preynat, B. Thuilot, P. Avanzini, P. Martinet: Adaptive formation control of a fleet of mobile robots: Application to autonomous field operations, Int. Conf. Robotics Autom. (2010) pp. 1241–1246

    Google Scholar 

  36. A. Shapiro, E. Korkidi, A. Demri, R. Riemer, Y. Edan, O. Ben-Shahar: Toward elevated agrobotics: An autonomous field robot for spraying and pollinating date palm trees, J. Field Robotics 26(6/7), 572–590 (2009)

    Article  Google Scholar 

  37. S. Foix, G. Alenyà, C. Torras: Lock-in time-of-flight (ToF) cameras: A survey, IEEE Sensors J. 11(9), 1917–1926 (2011)

    Article  Google Scholar 

  38. R. Klose, J. Penlington, A. Ruckelshausen: Usability study of 3D time-of-flight cameras for automatic plant phenotyping, Workshop Comput. Image Anal. Agric. (2009) pp. 93–105

    Google Scholar 

  39. G. Alenyà, B. Dellen, S. Foix, C. Torras: Leaf segmentation from ToF data for robotized plant probing, IEEE Robotics Autom. Mag. 20(3), 50–59 (2013)

    Article  Google Scholar 

  40. G. Alenyà, B. Dellen, S. Foix, C. Torras: Robotic leaf probing via segmentation of range data into surface patches, IROS Workshop Agric. Robotics, Villamura (2012)

    Google Scholar 

  41. G. Alenyà, B. Dellen, C. Torras: 3D modelling of leaves from color and ToF data for robotized plant measuring, IEEE Int. Conf. Robotics Autom., Shanghai (2011) pp. 3408–3414

    Google Scholar 

  42. B. Dellen, G. Alenyà, S. Foix, C. Torras: Segmenting color images into surface patches by exploiting sparse depth data, IEEE Workshop Appl. Comput. Vis., Kona (2011) pp. 591–598

    Google Scholar 

  43. E.J. Van Henten, B.A.J. Van Tuijl, J. Hemming, J.G. Kornet, J. Bontsema, E.A. Van Os: Field test of an autonomous cucumber picking robot, Biosyst. Eng. 86, 305–313 (2003)

    Article  Google Scholar 

  44. E.J. Van Henten, J. Hemming, B.A.J. Van Tuijl, J.G. Kornet, J. Bontsema: Collision-free motion planning for a cucumber picking robot, Biosyst. Eng. 86, 135–144 (2003)

    Article  Google Scholar 

  45. E.J. Van Henten, J. Hemming, B.A.J. Van Tuijl, J.G. Kornet, J. Meuleman, J. Bontsema, E.A. Van Os: An autonomous robot for harvesting cucumbers in greenhouses, Auton. Robots 13, 241–258 (2002)

    Article  MATH  Google Scholar 

  46. S. Hayashi, K. Shigematsu, S. Yamamoto, K. Kobayashi, Y. Kohno, J. Kamata, M. Kurita: Evaluation of a strawberry-harvesting robot in a field test, Biosyst. Eng. 105, 160–171 (2010)

    Article  Google Scholar 

  47. S. Hayashi, S. Yamamoto, S. Saito, Y. Ochiai, Y. Kohno, K. Yamamoto, J. Kamata, M. Kurita: Development of a movable strawberry-harvesting robot using a travelling platform, Proc. Int. Conf. Agric. Eng. CIGR-AgEng 2012, Valencia, Spain (2012)

    Google Scholar 

  48. F. Georgsson, T. Hellström, T. Johansson, K. Prorok, O. Ringdahl, U. Sandström: Development of an autonomous path tracking forest machine – a status report. In: Field and Service Robotics: Results of the 5th International Conference, ed. by P. Corke, S. Sukkarieh (Springer, Berlin, Heidelberg 2006) pp. 603–614

    Google Scholar 

  49. M. Miettinen, M. Öhman, A. Visala, P. Forsman: Simultaneous localization and mapping for forest harvesters, IEEE Int. Conf. Robotics Autom. (2007) pp. 517–522

    Google Scholar 

  50. J. Roßmann, M. Schluse, C. Schlette, A. Bücken, P. Krahwinkler, M. Emde: Realization of a highly accurate mobile robot system for multi purpose precision forestry applications, The 14th Int. Conf. Adv. Robotics (2009) pp. 133–138

    Google Scholar 

  51. J. Roßmann, P. Krahwinkler, A. Bücken: Mapping and navigation of mobile robots in natural environments. In: Advances in Robotics Research - Theory, Implementation, Application. German Workshop on Robotics, ed. by T. Kröger, F.M. Wahl (Springer, Berlin, Heidelberg 2009) pp. 43–52

    Google Scholar 

  52. S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)

    MATH  Google Scholar 

  53. P. Krahwinkler, J. Roßmann, B. Sondermann: Support vector machine based decision tree for very high resolution multispectral forest mapping, IEEE Int. Geosci. Remote Sens. Symp. (2011) pp. 43–46

    Google Scholar 

  54. A. Bücken, J. Roßmann: From the volumetric algorithm for single-tree delineation towards a fully-automated process for the generation of virtual forests. In: Progress and New Trends in 3D Geoinformation Sciences. Lecture Notes in Geoinformation and Cartography, ed. by J. Pouliot, S. Daniel, F. Hubert, A. Zamyadi (Springer, Berlin, Heidelberg 2013) pp. 79–99

    Chapter  Google Scholar 

  55. J. Roßmann, T. Jung, M. Rast: Developing virtual testbeds for mobile robotic applications in the woods and on the moon, The IEEE/RSJ 2010 Int. Conf. Intell. Robots Syst. (2010) pp. 4952–4957

    Google Scholar 

  56. A. Shiriaev, L. Freidovich, I. Manchester, U. Mettin, P. La Hera, S. Westerberg: Status of Smart Crane Lab Project: Modeling and Control for a Forwarder Crane, Department of Applied Physics and Electronics (Umeå University, Umeå 2008)

    Google Scholar 

  57. U. Mettin, P.X. La Hera, D.O. Morales, A.S. Shiriaev, L.B. Freidovich, S. Westerberg: Trajectory planning and time-independent motion control for a kinematically redundant hydraulic manipulator, Int. Conf. Adv. Robotics (2009)

    Google Scholar 

  58. U. Mettin, S. Westerberg, P.X. La Hera, A. Shiriaev: Analysis of human-operated motions and trajectory replanning for kinematically redundant manipulators, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2009)

    Google Scholar 

  59. D. Morales, S. Westerberg, P. La Hera, U. Mettin, L. Freidovich, A. Shiriaev: Open-loop control experiments on driver assistance for crane forestry machines, IEEE Int. Conf. Robotics Autom. (2011)

    Google Scholar 

  60. A. Hansson, M. Servin: Semi-autonomous shared control of large-scale manipulator arms, Control Eng. Pract. 18(9), 1069–1076 (2010)

    Article  Google Scholar 

  61. S. Westerberg, I. Manchester, U. Mettin, P. La Hera, A. Shiriaev: Virtual environment teleoperation of a hydraulic forestry crane, IEEE Int. Conf. Robotics Autom. (2008)

    Google Scholar 

  62. Y.-C. Park, A. Shiriaev, S. Westerberg, S. Lee: 3D log recognition and pose estimation for robotic forestry machine, IEEE Int. Conf. Robotics Autom. (2011)

    Google Scholar 

  63. NLIS: National Livestock Identification System, NSW Department of Primary Industries, http://goo.gl/WoHUi2

  64. Lely home page: http://goo.gl/JCl8CI

  65. Juno feed-pusher: http://goo.gl/V5H2Ye

  66. Lely Vector feeder: http://goo.gl/dLiL3q

  67. M. Dunn, J. Billingsley, N. Finch: Machine vision classification of animals, Mechatron. Mach. Vis. 2003: Future Trends: Proc. 10th Annual Conf. Mechatron. Mach. Vis. Pract. (Research Studies, Baldock 2003)

    Google Scholar 

  68. C. McCarthy, J. Billingsley, N. Finch, P. Murray, J. Gaughan: Cattle liveweight estimation using machine vision assessment of objective body measurements: First results, Proc. 28th Bienn. Aust. Soc. Anim. Production Conf., Vol. 28 (Australian Society of Animal Production, Wagga Wagga 2010)

    Google Scholar 

  69. Y. Wang, W. Yang, P. Winter, L.T. Walker: Non-contact sensing of hog weights by machine vision, Appl. Eng. Agric. 22(4), 577 (2006)

    Article  Google Scholar 

  70. W. Zhu, F. Zhong, X. Li: Automated monitoring system of pig behavior based on RFID and ARM-LINUX, Third Int. Symp. Intell. Inf. Technol. Secur. Inf. (2010) pp. 431–434

    Google Scholar 

  71. S. Barry, D. Cook, R. Duthie, D. Clifford, D. Anderson: Future Surveillance Needs for Honeybee Biosecurity, RIRDC Publication No. 10/107, http://goo.gl/MUrPLo

  72. Lely Astronaut A4 milking system: http://goo.gl/wYhUVH

  73. J.P. Trevelyan: Sensing and control for sheep-shearing robots, IEEE J. Robotics Autom. 5(6), 716–727 (1989)

    Article  Google Scholar 

  74. Robotics in the Poultry Industry, Poultry CRC: http://goo.gl/xH5vy6

  75. A. J. Bubb, T. K. Driver, C. D. James: CASE STUDY - Redefining the cowboy: Precision pastoral decision making from remote monitoring and control of cattle, http://goo.gl/Vu0FlQ (2010)

  76. R. Rankin: Further automation, Meat '93, Aust. Meat Ind. Res. Conf., Gold Coast. (1993), available online at http://goo.gl/lv2yjh

    Google Scholar 

  77. Performance Audit, Management of Project Fututech, The Meat Research Corporation, http://goo.gl/C5jMgm

  78. Robotic Technologies Limited: RTL – Scott and Silver Fern Farms, http://goo.gl/xZxLOZ

  79. Automated Boning Room System, Scott Group: http://goo.gl/0zFVqi

  80. Chicken Whole Leg Deboning Machine, Mayekawa: http://goo.gl/xhj2Lf

  81. Poultry slaughtering, Hyfoma: http://goo.gl/dzTfVT

  82. Association for Unmanned Vehicle Systems International: The Economic Impact of Unmanned Aircraft Systems Integration in the United States, http://goo.gl/http://goo.gl/NS5EkT (2013)

  83. J. Dong, L. Carlone, G.C. Rains, T. Coolong, F. Dellaert: 4D mapping of fields using autonomous ground and aerial vehicles, ASABE Int. Conf., Montreal (2014), Paper No. 141912258

    Google Scholar 

  84. F.K. Evert van, P. Voet van der, E. Valkengoed van, L. Kooistra, C. Kempenaar: Satellite-based herbicide rate recommendation for potato haulm killing, Eur. J. Agron. 43, 49–57 (2012)

    Article  Google Scholar 

  85. C. Kempenaar, F.K. Evert van, T. Been: Use of vegetation indices in variable rate application of potato haulm killing herbicides, Proc. ICPA Conf., Sacramento, USA 2014 (2014)

    Google Scholar 

  86. C. Pugh, M. Jarman, S. Keyworth, J. Webber, I. Cameron: URSULA Agriculture, http://goo.gl/HzGkRT(2013)

  87. S. Singh, S. Nuske, M. Bergerman, T. Bates, J. M. Peltier: Vineyard efficiency through high-resolution, spatiotemporal crop load measurement and management, http://goo.gl/iqXgWy

  88. S. Blackmore: New concepts in agricultural automation, HGCA Conf. (2009)

    Google Scholar 

  89. J.L. Glancey, W.E. Kee: Engineering aspects of production and harvest mechanization for fresh and processed vegetables, HortTechnology 15, 76–79 (2005)

    Article  Google Scholar 

  90. T. Burks, F. Villegas, M. Hannan, S. Flood, B. Sivaraman, V. Subramanian, J. Sikes: Engineering and horticultural aspects of robotic fruit harvesting: Opportunities and constraints, HortTechnology 15, 79–87 (2005)

    Article  Google Scholar 

  91. K. Ellis, T.A. Baugher, K. Lewis: Use of survey instruments to assess technology adoption for tree fruit production, HortTechnology 20, 1043–1048 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Bergerman .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Autonomous orchard tractors available from http://handbookofrobotics.org/view-chapter/56/videodetails/26

:

Autonomous orchard vehicle for specialty crop production available from http://handbookofrobotics.org/view-chapter/56/videodetails/91

:

Autonomous utility vehicle – R Gator available from http://handbookofrobotics.org/view-chapter/56/videodetails/93

:

Automatic plant probing available from http://handbookofrobotics.org/view-chapter/56/videodetails/95

:

Visual GPS – High accuracy localization for forestry machinery available from http://handbookofrobotics.org/view-chapter/56/videodetails/96

:

Smart Seeder: An autonomous high accuracy seed planter for broad acre crops available from http://handbookofrobotics.org/view-chapter/56/videodetails/131

:

A robot for harvesting sweet-pepper in greenhouses available from http://handbookofrobotics.org/view-chapter/56/videodetails/304

:

Ladybird: An intelligent farm robot for the vegetable industry available from http://handbookofrobotics.org/view-chapter/56/videodetails/305

:

An automated mobile platform for orchard scanning and for soil, yield, and flower mapping available from http://handbookofrobotics.org/view-chapter/56/videodetails/306

:

A mini unmanned aerial system for remote sensing in agriculture available from http://handbookofrobotics.org/view-chapter/56/videodetails/307

:

An autonomous cucumber harvester available from http://handbookofrobotics.org/view-chapter/56/videodetails/308

:

An autonomous robot for de-leafing cucumber plants available from http://handbookofrobotics.org/view-chapter/56/videodetails/309

:

The Intelligent Autonomous Weeder available from http://handbookofrobotics.org/view-chapter/56/videodetails/310

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergerman, M., Billingsley, J., Reid, J., van Henten, E. (2016). Robotics in Agriculture and Forestry. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics