Skip to main content

Contact Modeling and Manipulation

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Robotic manipulators use contact forces to grasp and manipulate objects in their environments. Fixtures rely on contacts to immobilize workpieces. Mobile robots and humanoids use wheels or feet to generate the contact forces that allow them to locomote. Modeling of the contact interface, therefore, is fundamental to analysis, design, planning, and control of many robotic tasks.

This chapter presents an overview of the modeling of contact interfaces, with a particular focus on their use in manipulation tasks, including graspless or nonprehensile manipulation modes such as pushing. Analysis and design of grasps and fixtures also depends on contact modeling, and these are discussed in more detail in Chap. 38. Sections 37.237.5 focus on rigid-body models of contact. Section 37.2 describes the kinematic constraints caused by contact, and Sect. 37.3 describes the contact forces that may arise with Coulomb friction. Section 37.4 provides examples of analysis of multicontact manipulation tasks with rigid bodies and Coulomb friction. Section 37.5 extends the analysis to manipulation by pushing. Section 37.6 introduces modeling of contact interfaces, kinematic duality, and pressure distribution and soft contact interface. Section 37.7 describes the concept of the friction limit surface and illustrates it with an example demonstrating the construction of a limit surface for a soft contact. Finally, Sect. 37.8 discusses how these more accurate models can be used in fixture analysis and design.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

CCW:

counterclockwise

COR:

center of rotation

CP:

complementarity problem

CW:

clockwise

DOF:

degree of freedom

LCSP:

linear constraint satisfaction program

References

  1. A. Bicchi: On the problem of decomposing grasp and manipulation forces in multiple whole-limb manipulation, Int. J. Robotics Auton. Syst. 13, 127–147 (1994)

    Article  Google Scholar 

  2. K. Harada, M. Kaneko, T. Tsuji: Rolling based manipulation for multiple objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000) pp. 3888–3895

    Google Scholar 

  3. M.R. Cutkosky, I. Kao: Computing and controlling the compliance of a robotic hand, IEEE Trans. Robotics Autom. 5(2), 151–165 (1989)

    Article  Google Scholar 

  4. M.R. Cutkosky, S.-H. Lee: Fixture planning with friction for concurrent product/process design, Proc. NSF Eng. Des. Res. Conf. (1989)

    Google Scholar 

  5. S.-H. Lee, M. Cutkosky: Fixture planning with friction, ASME J. Eng. Ind. 113(3), 320–327 (1991)

    Article  Google Scholar 

  6. Q. Lin, J.W. Burdick, E. Rimon: A stiffness-based quality measure for compliant grasps and fixtures, IEEE Trans. Robotics Autom. 16(6), 675–688 (2000)

    Article  Google Scholar 

  7. P. Lötstedt: Coulomb friction in two-dimensional rigid body systems, Z. Angew. Math. Mech. 61, 605–615 (1981)

    Article  MathSciNet  Google Scholar 

  8. P. Lötstedt: Mechanical systems of rigid bodies subject to unilateral constraints, SIAM J. Appl. Math. 42(2), 281–296 (1982)

    Article  MathSciNet  Google Scholar 

  9. P.E. Dupont: The effect of Coulomb friction on the existence and uniqueness of the forward dynamics problem, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Nice (1992) pp. 1442–1447

    Google Scholar 

  10. M.A. Erdmann: On a representation of friction in configuration space, Int. J. Robotics Res. 13(3), 240–271 (1994)

    Article  Google Scholar 

  11. K.M. Lynch, M.T. Mason: Pulling by pushing, slip with infinite friction, and perfectly rough surfaces, Int. J. Robotics Res. 14(2), 174–183 (1995)

    Article  Google Scholar 

  12. J.S. Pang, J.C. Trinkle: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction, Math. Prog. 73, 199–226 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.C. Trinkle, J.S. Pang, S. Sudarsky, G. Lo: On dynamic multi-rigid-body contact problems with Coulomb friction, Z. Angew. Math. Mech. 77(4), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. M.T. Mason: Mechanics of Robotic Manipulation (MIT Press, Cambrige 2001)

    Book  Google Scholar 

  15. Y.-T. Wang, V. Kumar, J. Abel: Dynamics of rigid bodies undergoing multiple frictional contacts, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Nice (1992) pp. 2764–2769

    Google Scholar 

  16. T.H. Speeter: Three-dimensional finite element analysis of elastic continua for tactile sensing, Int. J. Robotics Res. 11(1), 1–19 (1992)

    Article  Google Scholar 

  17. K. Dandekar, A.K. Srinivasan: A 3-dimensional finite element model of the monkey fingertip for predicting responses of slowly adapting mechanoreceptors, ASME Bioeng. Conf., Vol. 29 (1995) pp. 257–258

    Google Scholar 

  18. N. Xydas, M. Bhagavat, I. Kao: Study of soft-finger contact mechanics using finite element analysis and experiments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (2000)

    Google Scholar 

  19. K. Komvopoulos, D.-H. Choi: Elastic finite element analysis of multi-asperity contacts, J. Tribol. 114, 823–831 (1992)

    Article  Google Scholar 

  20. L.T. Tenek, J. Argyris: Finite Element Analysis for Composite Structures (Kluwer, Bosten 1998)

    Book  MATH  Google Scholar 

  21. Y. Nakamura: Contact stability measure and optimal finger force control of multi-fingered robot hands, crossing bridges: Advances in flexible automation and robotics, Proc. U.S.-Jpn. Symp. Flex. Autom. (1988) pp. 523–528

    Google Scholar 

  22. Y.C. Park, G.P. Starr: Optimal grasping using a multifingered robot hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 689–694

    Google Scholar 

  23. E. Rimon, J. Burdick: On force and form closure for multiple finger grasps, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 1795–1800

    Chapter  Google Scholar 

  24. E. Rimon, J.W. Burdick: New bounds on the number of frictionless fingers required to immobilize planar objects, J. Robotics Sys. 12(6), 433–451 (1995)

    Article  MATH  Google Scholar 

  25. E. Rimon, J.W. Burdick: Mobility of bodies in contact – Part I: A 2nd-order mobility index for multiple-finger grasps, IEEE Trans. Robotics Autom. 14(5), 696–708 (1998)

    Article  Google Scholar 

  26. D.J. Montana: The kinematics of contact and grasp, Int. J. Robotics Res. 7(3), 17–32 (1988)

    Article  Google Scholar 

  27. C.S. Cai, B. Roth: On the planar motion of rigid bodies with point contact, Mech. Mach. Theory 21(6), 453–466 (1986)

    Article  Google Scholar 

  28. C. Cai, B. Roth: On the spatial motion of a rigid body with point contact, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1987) pp. 686–695

    Google Scholar 

  29. A.B.A. Cole, J.E. Hauser, S.S. Sastry: Kinematics and control of multifingered hands with rolling contact, IEEE Trans. Autom. Control 34(4), 398–404 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1994)

    MATH  Google Scholar 

  31. F. Reuleaux: The Kinematics of Machinery (Dover, New York 1963), reprint of MacMillan, 1876

    Google Scholar 

  32. C.A. Coulomb: Theorie des Machines Simples en Ayant Egard au Frottement de Leurs Parties et a la Roideur des Cordages (Bachelier, Paris 1821)

    Google Scholar 

  33. Y. Maeda, T. Arai: Planning of graspless manipulation by a multifingered robot hand, Adv. Robotics 19(5), 501–521 (2005)

    Article  Google Scholar 

  34. M.T. Mason: Two graphical methods for planar contact problems, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Osaka (1991) pp. 443–448

    Google Scholar 

  35. R. Howe, I. Kao, M. Cutkosky: Sliding of robot fingers under combined torsion and shear loading, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Vol. 1, Philadelphia (1988) pp. 103–105

    Google Scholar 

  36. I. Kao, M.R. Cutkosky: Dextrous manipulation with compliance and sliding, Int. J. Robotics Res. 11(1), 20–40 (1992)

    Article  Google Scholar 

  37. R.D. Howe, M.R. Cutkosky: Practical force-motion models for sliding manipulation, Int. J. Robotics Res. 15(6), 555–572 (1996)

    Article  Google Scholar 

  38. N. Xydas, I. Kao: Modeling of contact mechanics and friction limit surface for soft fingers with experimental results, Int. J. Robotics Res. 18(9), 941–950 (1999)

    Article  Google Scholar 

  39. I. Kao, F. Yang: Stiffness and contact mechanics for soft fingers in grasping and manipulation, IEEE Trans. Robotics Autom. 20(1), 132–135 (2004)

    Article  Google Scholar 

  40. J. Jameson, L. Leifer: Quasi-Static Analysis: A method for predicting grasp stability, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1986) pp. 876–883

    Google Scholar 

  41. S. Goyal, A. Ruina, J. Papadopoulos: Planar sliding with dry friction: Part 2, Dynamics of motion Wear 143, 331–352 (1991)

    Google Scholar 

  42. P. Tiezzi, I. Kao: Modeling of viscoelastic contacts and evolution of limit surface for robotic contact interface, IEEE Trans. Robotics 23(2), 206–217 (2007)

    Article  Google Scholar 

  43. M. Anitescu, F. Potra: Formulating multi-rigid-body contact problems with friction as solvable linear complementarity problems, ASME J. Nonlin. Dyn. 14, 231–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Berard, J. Trinkle, B. Nguyen, B. Roghani, J. Fink, V. Kumar: daVinci code: A multi-model simulation and analysis tool for multi-body systems, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)

    Google Scholar 

  45. P. Song, J.-S. Pang, V. Kumar: A semi-implicit time-stepping model for frictional compliant contact problems, Int. J. Numer. Methods Eng. 60(13), 2231–2261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Stewart, J. Trinkle: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction, Int. J. Numer. Methods Eng. 39, 2673–2691 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. R.W. Cottle, J.-S. Pang, R.E. Stone: The Linear Complementarity Problem (Academic, New York 1992)

    MATH  Google Scholar 

  48. S.N. Simunovic: Force information in assembly processes, Int. Symp. Ind. Robots (1975)

    Google Scholar 

  49. V.-D. Nguyen: Constructing force-closure grasps, Int. J. Robotics Res. 7(3), 3–16 (1988)

    Article  Google Scholar 

  50. K.M. Lynch: Toppling manipulation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999)

    Google Scholar 

  51. M.T. Zhang, K. Goldberg, G. Smith, R.-P. Berretty, M. Overmars: Pin design for part feeding, Robotica 19(6), 695–702 (2001)

    Article  Google Scholar 

  52. D. Reznik, J. Canny: The Coulomb pump: A novel parts feeding method using a horizontally-vibrating surface, Proc. IEEE Int. Conf. Robotics Autom. (1998) pp. 869–874

    Google Scholar 

  53. A.E. Quaid: A miniature mobile parts feeder: Operating principles and simulation results, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1999) pp. 2221–2226

    Google Scholar 

  54. D. Reznik, J. Canny: A flat rigid plate is a universal planar manipulator, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 1471–1477

    Google Scholar 

  55. D. Reznik, J. Canny: C'mon part, do the local motion!, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 2235–2242

    Google Scholar 

  56. T. Vose, P. Umbanhowar, K.M. Lynch: Vibration-induced frictional force fields on a rigid plate, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007)

    Google Scholar 

  57. M.T. Mason: Mechanics and planning of manipulator pushing operations, Int. J. Robotics Res. 5(3), 53–71 (1986)

    Article  Google Scholar 

  58. K.Y. Goldberg: Orienting polygonal parts without sensors, Algorithmica 10, 201–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  59. R.C. Brost: Automatic grasp planning in the presence of uncertainty, Int. J. Robotics Res. 7(1), 3–17 (1988)

    Article  Google Scholar 

  60. J.C. Alexander, J.H. Maddocks: Bounds on the friction-dominated motion of a pushed object, Int. J. Robotics Res. 12(3), 231–248 (1993)

    Article  Google Scholar 

  61. M.A. Peshkin, A.C. Sanderson: The motion of a pushed, sliding workpiece,, IEEE J. Robotics Autom. 4(6), 569–598 (1988)

    Article  Google Scholar 

  62. M.A. Peshkin, A.C. Sanderson: Planning robotic manipulation strategies for workpieces that slide, IEEE J. Robotics Autom. 4(5), 524–531 (1988)

    Article  Google Scholar 

  63. M. Brokowski, M. Peshkin, K. Goldberg: Curved fences for part alignment, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 467–473

    Google Scholar 

  64. K.M. Lynch: The mechanics of fine manipulation by pushing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Nice (1992) pp. 2269–2276

    Google Scholar 

  65. K.M. Lynch, M.T. Mason: Stable pushing: Mechanics, controllability, and planning, Int. J. Robotics Res. 15(6), 533–556 (1996)

    Article  Google Scholar 

  66. K. Harada, J. Nishiyama, Y. Murakami, M. Kaneko: Pushing multiple objects using equivalent friction center, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 2485–2491

    Google Scholar 

  67. J.D. Bernheisel, K.M. Lynch: Stable transport of assemblies: Pushing stacked parts, IEEE Trans. Autom. Sci. Eng. 1(2), 163–168 (2004)

    Article  Google Scholar 

  68. J.D. Bernheisel, K.M. Lynch: Stable transport of assemblies by pushing, IEEE Trans. Robotics 22(4), 740–750 (2006)

    Article  Google Scholar 

  69. H. Mayeda, Y. Wakatsuki: Strategies for pushing a 3D block along a wall, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Osaka (1991) pp. 461–466

    Google Scholar 

  70. H. Hertz: On the Contact of Rigid Elastic Solids and on Hardness. In: Miscellaneous Papers, ed. by H. Hertz (MacMillan, London 1882) pp. 146–183

    Google Scholar 

  71. K.L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge 1985)

    Book  MATH  Google Scholar 

  72. S.P. Timoshenko, J.N. Goodier: Theory of Elasticity, 3rd edn. (McGraw-Hill, New York 1970)

    MATH  Google Scholar 

  73. M.A. Meyers, K.K. Chawla: Mechanical Behavior of Materials (Prentice Hall, Upper Saddle River, 1999)

    MATH  Google Scholar 

  74. C.D. Tsai: Nonlinear Modeling on Viscoelastic Contact Interface: Theoretical Study and Experimental Validation, Ph.D. Thesis (Stony Brook University, Stony Brook 2010)

    Google Scholar 

  75. C. Tsai, I. Kao, M. Higashimori, M. Kaneko: Modeling, sensing and interpretation of viscoelastic contact interface, J. Adv. Robotics 26(11/12), 1393–1418 (2012)

    Article  Google Scholar 

  76. Y.C. Fung: Biomechanics: Mechanical Properties of Living Tissues (Springer, Berlin, Heidelberg 1993)

    Book  Google Scholar 

  77. W. Flugge: Viscoelasticity (Blaisdell, Waltham 1967)

    MATH  Google Scholar 

  78. J.C. Maxwell: On the dynamical theory of gases, Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    Google Scholar 

  79. N. Sakamoto, M. Higashimori, T. Tsuji, M. Kaneko: An optimum design of robotic hand for handling a visco-elastic object based on maxwell model, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 1219–1225

    Google Scholar 

  80. D.P. Noonan, H. Liu, Y.H. Zweiri, K.A. Althoefer, L.D. Seneviratne: A dual-function wheeled probe for tissue viscoelastic property indentification during minimally invasive surgery, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 2629–2634

    Google Scholar 

  81. P. Tiezzi, I. Kao: Characteristics of contact and limit surface for viscoelastic fingers, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006) pp. 1365–1370

    Google Scholar 

  82. P. Tiezzi, I. Kao, G. Vassura: Effect of layer compliance on frictional behavior of soft robotic fingers, Adv. Robotics 21(14), 1653–1670 (2007)

    Article  Google Scholar 

  83. M. Kimura, Y. Sugiyama, S. Tomokuni, S. Hirai: Constructing rheologically deformable virtual objects, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2003) pp. 3737–3743

    Google Scholar 

  84. W.N. Findley, J.S.Y. Lay: A modified superposition principle applied to creep of non-linear viscoelastic material under abrupt changes in state of combined stress, Trans. Soc. Rheol. 11(3), 361–380 (1967)

    Article  Google Scholar 

  85. D.B. Adolf, R.S. Chambers, J. Flemming: Potential energy clock model: Justification and challenging predictions, J. Rheol. 51(3), 517–540 (2007)

    Article  Google Scholar 

  86. A.Z. Golik, Y.F. Zabashta: A molecular model of creep and stress relaxation in crystalline polymers, Polym. Mech. 7(6), 864–869 (1971)

    Article  Google Scholar 

  87. B.H. Zimm: Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss, J. Chem. Phys. 24(2), 269–278 (1956)

    Article  MathSciNet  Google Scholar 

  88. T. Alfrey: A molecular theory of the viscoelastic behavior of an amorphous linear polymer, J. Chem. Phys. 12(9), 374–379 (1944)

    Article  Google Scholar 

  89. P.E. Rouse Jr.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys. 21(7), 1272–1280 (1953)

    Article  Google Scholar 

  90. F. Bueche: The viscoelastic properties of plastics, J. Chem. Phys. 22(4), 603–609 (1954)

    Article  Google Scholar 

  91. L.R.G. Treloar: The Physics of Rubber Elasticity (Clarendon Press, Oxford, 1975)

    Google Scholar 

  92. T.G. Goktekin, A.W. Bargteil, J.F. O'Brien: A method for animating viscoelastic fluid, ACM Trans. Graph. 23(3), 463–468 (1977)

    Article  Google Scholar 

  93. S. Arimoto, P.A.N. Nguyen, H.Y. Han, Z. Doulgeri: Dynamics and control of a set of dual fingers with soft tips, Robotica 18, 71–80 (2000)

    Article  Google Scholar 

  94. T. Inoue, S. Hirai: Modeling of soft fingertip for object manipulation using tactile sensig, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Las Vegas, Nevada (2003)

    Google Scholar 

  95. T. Inoue, S. Hirai: Rotational contact model of soft fingertip for tactile sensing, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 2957–2962

    Google Scholar 

  96. T. Inoue, S. Hirai: Elastic model of deformable fingertip for soft-fingered manipulation, IEEE Trans. Robotics 22, 1273–1279 (2006)

    Article  Google Scholar 

  97. T. Inoue, S. Hirai: Dynamic stable manipulation via soft-fingered hand, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2007) pp. 586–591

    Google Scholar 

  98. V.A. Ho, D.V. Dat, S. Sugiyama, S. Hirai: Development and analysis of a sliding tactile soft fingertip embedded with a microforce/moment sensor, IEEE Trans. Robotics 27(3), 411–424 (2011)

    Article  Google Scholar 

  99. D. Turhan, Y. Mengi: Propagation of initially plane waves in nonhomogeneous viscoelastic media, Int. J. Solids Struct. 13(2), 79–92 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  100. P. Stucky, W. Lord: Finite element modeling of transient ultrasonic waves in linear viscoelastic media, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(1), 6–16 (2001)

    Article  Google Scholar 

  101. J.M. Pereira, J.J. Mansour, B.R. Davis: Dynamic measurement of the viscoelastic properties of skin, J. Biomech. 24(2), 157–162 (1991)

    Article  Google Scholar 

  102. R. Fowles, R.F. Williams: Plane stress wave propagation in solids, J. Appl. Phys. 41(1), 360–363 (1970)

    Article  Google Scholar 

  103. E. Wolf: Progress in Optics (North-Holland, Amsterdam 1992)

    Google Scholar 

  104. E.J. Nicolson, R.S. Fearing: The reliability of curvature estimates from linear elastic tactile sensors, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995)

    Google Scholar 

  105. M. Abramowitz, I. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and mathematical Tables, 7th edn. (Dover, New York 1972)

    MATH  Google Scholar 

  106. I. Kao, S.-F. Chen, Y. Li, G. Wang: Application of bio-engineering contact interface and MEMS in robotic and human augmented systems, IEEE Robotics Autom, Mag. 10(1), 47–53 (2003)

    Google Scholar 

  107. S. Goyal, A. Ruina, J. Papadopoulos: Planar sliding with dry friction: Part 1. Limit surface and moment function, Wear 143, 307–330 (1991)

    Article  Google Scholar 

  108. J.W. Jameson: Analytic Techniques for Automated Grasp. Ph.D. Thesis (Department of Mechanical Engineering, Stanford University, Stanford 1985)

    Google Scholar 

  109. S. Goyal, A. Ruina, J. Papadopoulos: Limit surface and moment function description of planar sliding, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 794–799

    Google Scholar 

  110. K.M. Lynch, M.T. Mason: Dynamic nonprehensile manipulation: Controllability, planning, and experiments, Int. J. Robotics Res. 18(1), 64–92 (1999)

    Article  Google Scholar 

  111. A.J. Goldman, A.W. Tucker: Polyhedral convex cones. In: Linear Inequalities and Related Systems, ed. by H.W. Kuhn, A.W. Tucker (Princeton Univ. Press, Princeton 1956)

    Google Scholar 

  112. M.A. Erdman: A configuration space friction cone, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Osaka (1991) pp. 455–460

    Google Scholar 

  113. M.A. Erdmann: Multiple-point contact with friction: Computing forces and motions in configuration space, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Yokohama (1993) pp. 163–170

    Google Scholar 

  114. S. Hirai, H. Asada: Kinematics and statics of manipulation using the theory of polyhedral convex cones, Int. J. Robotics Res. 12(5), 434–447 (1993)

    Article  Google Scholar 

  115. R.S. Ball: The Theory of Screws (Cambridge Univ. Press, Cambridge 1900)

    MATH  Google Scholar 

  116. K.H. Hunt: Kinematic Geometry of Mechanisms (Oxford Univ. Press, Oxford 1978)

    MATH  Google Scholar 

  117. J.K. Davidson, K.H. Hunt: Robots and Screw Theory (Oxford Univ. Press, Oxford 2004)

    MATH  Google Scholar 

  118. J.M. Selig: Geometric Fundamentals of Robotics, 2nd edn. (Springer, Berlin, Heidelberg 2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imin Kao .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Pushing, sliding, and toppling available from http://handbookofrobotics.org/view-chapter/37/videodetails/802

:

Horizontal Transport by 2-DOF Vibration available from http://handbookofrobotics.org/view-chapter/37/videodetails/803

:

Programmable Velocity Vector Fields by 6-DOF Vibration available from http://handbookofrobotics.org/view-chapter/37/videodetails/804

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kao, I., Lynch, K.M., Burdick, J.W. (2016). Contact Modeling and Manipulation. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics