Skip to main content

Actuators for Soft Robotics

Part of the Springer Handbooks book series (SHB)

Abstract

Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old-fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently – in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snake-like and continuum soft robotics, are presented in Chap. 20, while Chap. 23 discusses in detail the biomimetic motivations that are often behind soft robotics.

Keywords

  • Humanoid Robot
  • Ionic Polymer Metal Composite
  • Continuous Variable Transmission
  • Variable Stiffness
  • Tool Center Point

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

figure a

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-32552-1_21
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-32552-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 21.1
Fig. 21.2
Fig. 21.3a–c
Fig. 21.4
Fig. 21.5
Fig. 21.6a,b
Fig. 21.7a,b
Fig. 21.8
Fig. 21.9
Fig. 21.10
Fig. 21.11
Fig. 21.12
Fig. 21.13
Fig. 21.14a–c

Abbreviations

AA:

agonist–antagonist

AMASC:

actuator with mechanically adjustable series compliance

CMCs:

ceramic matrix composite

CNT:

carbon nanotube

CVT:

continuous variable transmission

DOF:

degree of freedom

EAP:

electroactive polymer

ECD:

eddy current damper

ER:

electrorheological

FD:

friction damper

ILQR:

iterative linear quadratic regulator

IPMC:

ionic polymer-metal composite

KERS:

kinetic energy recovery system

LQR:

linear quadratic regulator

LWR:

light-weight robot

MACCEPA:

mechanically adjustable compliance and controllable equilibrium position actuator

MEMS:

microelectromechanical system

MIA:

mechanical impedance adjuster

MMC:

metal matrix composite

MR:

magnetorheological

NMMI:

natural machine motion initiative

OC:

optimal control

ODE:

ordinary differential equation

PAM:

pneumatic artificial muscle

PANi:

polyaniline

PLZT:

lead lanthanum zirconate titanate

PMC:

polymer matrix composite

PPy:

polypyrrole

PVDF:

polyvinylidene fluoride

PZT:

lead zirconate titanate

SEA:

series elastic actuator

SMA:

shape memory alloy

SMP:

shape memory polymer

TCP:

tool center point

VIA:

variable impedance actuator

VS-Joint:

variable stiffness joint

VSA:

variable stiffness actuator

WAM:

whole-arm manipulator

References

  1. K.T. Ulrich, T.T. Tuttle, J.P. Donoghue, W.T. Townsend: Intrinsically Safer Robots, Tech. Rep. (Barrett Technology Inc., Cambridge 1995), Final Report for NASA Contract NAS10-12178

    Google Scholar 

  2. B. Lacevic, P. Rocco: Safety-oriented control of robotic manipulators – A kinematic approach, Proc. 18th World Congr. Int. Fed. Autom. Control (IFAC) (2011)

    Google Scholar 

  3. S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R. Burgkart, A. Bicchi, A. Albu-Schaeffer: On making robots understand safety: Embedding injury knowledge into control, Int. J. Robotics Res. 31, 1578–1602 (2012)

    CrossRef  Google Scholar 

  4. K. Salisbury, W. Townsend, B. Eberman, D. DiPietro: Preliminary design of a whole-arm manipulation system (WAMS), Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Philadelphia (1988) pp. 254–260

    Google Scholar 

  5. G. Hirzinger, A. Albu-Schäffer, M. Hähnle, I. Schaefer, N. Sporer: On a new generation of torque controlled light-weight robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 3356–3363

    Google Scholar 

  6. K. Yokoi, F. Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, H. Hirukawa: Experimental study of humanoid robot HRP-1S, Int. J. Robotics Res. 23(4/5), 351–362 (2004)

    CrossRef  Google Scholar 

  7. K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, S. Kajita: Cybernetic human HRP-4C, Proc. IEEE/RAS Int. Conf. Humanoid Robots (2009) pp. 7–14

    Google Scholar 

  8. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura: The intelligent asimo: System overview and integration, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2002) pp. 2478–2483

    Google Scholar 

  9. M. Hirose, K. Ogawa: Honda humanoid robots development, Phil. Trans. Roy. Soc. A 365(1850), 11–19 (2007)

    CrossRef  Google Scholar 

  10. B. Vanderborght, B. Verrelst, R. Van Ham, M. Van Damme, D. Lefeber: A pneumatic biped: Experimental walking results and compliance adaptation experiments, Proc. Int. Conf. Humanoid Robots, Tsukuba (2006)

    Google Scholar 

  11. T. Takuma, K. Hosoda, M. Ogino, M. Asada: Stabilization of quasi-passive pneumatic muscle walker, Proc. IEEE/RAS Int. Conf. Humanoid Robots, Vol. 2 (2004) pp. 627–639

    Google Scholar 

  12. S.H. Collins, A. Ruina: A bipedal walking robot with efficient and human-like gait, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 1983–1988

    Google Scholar 

  13. N.G. Tsagarakis, S. Morfey, G. Medrano-Cerda, Z. Li, D.G. Caldwell: Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control, Proc. IEEE Int. Conf. Robotics Autom. (2013) pp. 665–670

    Google Scholar 

  14. J.W. Hurst, J.E. Chestnutt, A.A. Rizzi: An Actuator with Mechanically Adjustable Series Compliance, CMU-RI-TR-04-24 (Robotics Inst./Carnegie Mellon University, Pittsburgh 2004)

    Google Scholar 

  15. L.C. Visser, S. Stramigioli, R. Carloni: Robust bipedal walking with variable leg stiffness, Proc. 4th IEEE/RAS/EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2012) pp. 1626–1631

    Google Scholar 

  16. S. Haddadin, M.C. Ozparpucu, A. Albu-Schäffer: Optimal control for maximizing potential energy in a variable stiffness joint, Proc. 51st IEEE Annu. Conf. Decis. Control (CDC) (2012) pp. 1199–1206

    Google Scholar 

  17. M. Garabini, A. Passaglia, F.A.W. Belo, P. Salaris, A. Bicchi: Optimality principles in variable stiff- ness control: The VSA hammer, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), San Francisco (2011) pp. 1843–1851

    Google Scholar 

  18. A.G. Feldman: Once more on the equilibrium-point hypothesis (λ model) for motor control, J. Mot. Behav. 18, 17–54 (1986)

    CrossRef  Google Scholar 

  19. J.R. Flanagan, A.M. Wing: Modulation of grip force with load force during point-to-point arm movements, Exp. Brain Res. 95, 131–143 (1993)

    CrossRef  Google Scholar 

  20. J. Won, N. Hogan: Stability properties of human reaching movements, Exp. Brain Res. 107(1), 125–136 (1995)

    CrossRef  Google Scholar 

  21. P.L. Gribble, D.J. Ostry, V. Sanguineti, R. Laboissière: Are complex control signals required for human arm movement?, J. Neurophysiol. 79, 1409–1424 (1998)

    CrossRef  Google Scholar 

  22. J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, I.W. Hunter: Artificial muscle technology: Physical principles and naval prospects, IEEE J. Ocean. Eng. 29(3), 706–728 (2004)

    CrossRef  Google Scholar 

  23. A. Parr: Hydraulics and Pneumatics: A Technician's and Engineer's Guide (Butterworth-Heinemann, Oxford 1998)

    Google Scholar 

  24. I.L. Krivts, G.V. Krejnin: Pneumatic Actuating Systems for Automatic Equipment: Structure and Design (CRC, Boca Raton 2006)

    Google Scholar 

  25. H.A. Baldwin: Realizable models of muscle function, Proc. 1st Rock Biomech. Symp. (1969) pp. 139–148

    Google Scholar 

  26. K. Inoue: Rubbertuators and applications for robots, Proc. 4th Int. Symp. Robotics Res. (1987) pp. 57–63

    Google Scholar 

  27. B. Hannaford, J.M. Winters, C.-P. Chou, P.H. Marbot: The anthroform biorobotic arm: A system for the study of spinal circuits, Ann. Biomed. Eng. 23, 399–408 (1995)

    CrossRef  Google Scholar 

  28. D.G. Caldwell, G.A. Medrano-Cerda, M. Goodwin: Control of pneumatic muscle actuators, IEEE Control Syst. Mag. 15(1), 40–48 (1995)

    CrossRef  Google Scholar 

  29. T. Hesselroth, K. Sarkar, P.P. van der Smagt, K. Schulten: Neural network control of a pneumatic robot arm, IEEE Trans. Syst. Man Cybern. 24(1), 28–38 (1994)

    CrossRef  Google Scholar 

  30. A. Bicchi, S.L. Rizzini, G. Tonietti: Compliant design for intrinsic safety: General issues and preliminary design, Proc. IEEE Int. Symp. Intell. Robots Syst. (IROS), Maui (2001) pp. 1864–1869

    Google Scholar 

  31. F. Daerden, D. Lefeber: The concept and design of pleated pneumatic artificial muscles, Int. J. Fluid Power 2(3), 41–50 (2001)

    CrossRef  Google Scholar 

  32. B. Verrelst, R. Van Ham, B. Vanderborght, D. Lefeber, F. Daerden, M. Van Damme: Second generation pleated pneumatic artificial muscle and its robotic applications, Adv. Robotics 20(7), 783–805 (2006)

    CrossRef  Google Scholar 

  33. I.M. Gottlieb: Practical Electric Motor Handbook (Butterworth-Heinemann, Oxford 1997)

    Google Scholar 

  34. J.F. Gieras, M. Wing: Permanent Magnet Motor Technology: Design and Applications (CRC, Boca Raton 2002)

    Google Scholar 

  35. M. Gad-el Hak: The MEMS Handbook: MEMS, Design and Fabrication (CRC, Boca Raton 2006)

    MATH  Google Scholar 

  36. K. Uchino: Piezoelectric Actuators and Ultrasonic Motors (Kluwer, Boston 1997)

    Google Scholar 

  37. S.-C. Huang, W.-L. Chen: Design of topologically optimal microgripper, IEEE Int. Conf. Syst. Man Cybern. (2008)

    Google Scholar 

  38. J. Ueda, T. Secord, H. Asada: Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms, IEEE/ASME Trans. Mechatron. 15, 770–782 (2010)

    CrossRef  Google Scholar 

  39. J. Schultz, J. Ueda: Two-port network models for compliant rhomboidal strain amplifiers, IEEE Trans. Robotics 29(1), 42–54 (2013)

    CrossRef  Google Scholar 

  40. J. Schultz, J. Ueda: Nested piezoelectric cellular actuators for a biologically inspired camera positioning mechanism, IEEE Trans. Robotics 29(5), 1–14 (2013)

    CrossRef  Google Scholar 

  41. J. Schultz, J. Ueda: Experimental verification of discrete switching vibration suppression, IEEE/ASME Trans. Mechatron. 17(2), 298–308 (2012)

    CrossRef  Google Scholar 

  42. G. Engdahl: Handbook of Giant Magnetostrictive Materials (Academic, San Diego 2000)

    Google Scholar 

  43. D.C. Lagoudas: Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York 2008)

    MATH  Google Scholar 

  44. E. Torres-Jara, K. Gilpin, J. Karges, R.J. Wood, D. Rus: Composable flexible small actuators built from thin shape memory alloy sheets, IEEE Robotics Autom. Mag. 17(4), 78–87 (2010)

    CrossRef  Google Scholar 

  45. L. Jinsong: Shape-Memory Polymers and Multifunctional Composites (CRC, Boca Raton 2009)

    Google Scholar 

  46. F. Carpi, E. Smela: Biomedical Applications of Electroactive Polymer Actuators (Wiley, Chichester 2009)

    CrossRef  Google Scholar 

  47. P. Brochu, Q. Pei: Advances in dielectric elastomers for actuators and artificial muscles, Macromol. Rapid Commun. 31(1), 10–36 (2010)

    CrossRef  Google Scholar 

  48. H.S. Nalwa: Ferroelectric Polymers: Chemistry, Physics, and Applications (CRC, Boca Raton 1995)

    CrossRef  Google Scholar 

  49. F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, Amsterdan 2008)

    Google Scholar 

  50. G. Fernandez: Liquid-crystal polymers: Exotic actuators, Nat. Mater. 12(1), 12–14 (2013)

    CrossRef  Google Scholar 

  51. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz: Carbon nanotube actuators, Science 284(5418), 1340–1344 (1999)

    CrossRef  Google Scholar 

  52. A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein, M. Zhang, A.A. Zakhidov, R.H. Baughman: Giant-stroke, superelastic carbon nanotube aerogel muscles, Science 323(5921), 1575–1578 (2009)

    CrossRef  Google Scholar 

  53. J.D.W. Madden: Stiffer than steel, Science 323(5921), 1571–1572 (2009)

    CrossRef  Google Scholar 

  54. E. Guglielmino, C.W. Stammers, K.A. Edge, T. Sireteanu, D. Stancioiu: Damp-by-wire: Magnetorheological vs friction dampers, Proc. 16th IFAC World Cong. (2005) pp. 340–345

    Google Scholar 

  55. M. Laffranchi, N.G. Tsagarakis, D.G. Caldwell: A variable physical damping actuator (VPDA) for compliant robotic joints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1668–1674

    Google Scholar 

  56. J.C. Dixon: The Shock Absorber Handbook, Senior Lect. Eng. Mech. (Wiley, Chichester 2007)

    CrossRef  Google Scholar 

  57. J. Li, D. Jin, X. Zhang, J. Zhang, W.A. Gruver: An electrorheological fluid damper for robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 2631–2636

    Google Scholar 

  58. C.-M. Chew, G.-S. Hong, W. Zhou: Series damper actuator: A novel force control actuator, Proc. 4th IEEE/RAS Int. Conf. Humanoid Robots (2004) pp. 533–546

    Google Scholar 

  59. B. Ebrahimi, M.B. Khamesee, F. Golnaraghi: A novel eddy current damper: Theory and experiment, J. Phys. D Appl. Phys. 42(7), 075001 (2009)

    CrossRef  Google Scholar 

  60. H.A. Sodano, J.-S. Bae, D. Inman, K. Belvin: Improved concept and model of eddy current damper, J. Vib. Acoust. 128(3), 294–302 (2006)

    CrossRef  Google Scholar 

  61. G.A. Pratt, M.M. Williamson: Series elastic actuators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. Hum. Robot Interact. Coop. Robots, Vol. 1 (1995) pp. 399–406

    Google Scholar 

  62. M.L. Latash: Motor synergies and the equilibrium-point, Mot. Control 14(3), 294–322 (2010)

    MathSciNet  CrossRef  Google Scholar 

  63. T. Morita, S. Sugano: Development and evaluation of seven-d.o.f. mia arm, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 462–467

    Google Scholar 

  64. J.W. Hurst, J. Chestnutt, A. Rizzi: An actuator with physically variable stiffness for highly dynamic legged locomotion, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 4662–4667

    Google Scholar 

  65. R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst, D. Lefeber: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot, Robotics Auton. Syst. 55(10), 761–768 (2007)

    CrossRef  Google Scholar 

  66. S. Wolf, G. Hirzinger: A new variable stiffness design: Matching requirements of the next robot generation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 1741–1746

    Google Scholar 

  67. N. Hogan: Adaptive control of mechanical impedance by coactivation of antagonist muscles, IEEE Trans. Autom. Control AC-29(8), 681–690 (1984)

    MATH  CrossRef  Google Scholar 

  68. S.A. Migliore, E.A. Brown, S.P. DeWeerth: Biologically inspired joint stiffness control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 4519–4524

    Google Scholar 

  69. G. Tonietti, R. Schiavi, A. Bicchi: Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 528–533

    Google Scholar 

  70. M.G. Catalano, G. Grioli, M. Garabini, F. Bonomo, M. Mancinit, N. Tsagarakis, A. Bicchi: Vsa-cubebot: A modular variable stiffness platform for multiple degrees of freedom robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 5090–5095

    Google Scholar 

  71. A. Bicchi, G. Tonietti: Fast and soft-arm tactics, IEEE Robotics Autom. Mag. 11(2), 22–33 (2004)

    CrossRef  Google Scholar 

  72. A. Albu-Schäffer, S. Wolf, O. Eiberger, S. Haddadin, F. Petit, M. Chalon: Dynamic modelling and control of variable stiffness actuators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 2155–2162

    Google Scholar 

  73. A.H.C. Gosline, V. Hayward: Eddy current brakes for haptic interfaces: Design, identification, and control, IEEE/ASME Trans, Mechatron. 13(6), 669–677 (2008)

    Google Scholar 

  74. M. Catalano, G. Grioli, M. Garabini, F.W. Belo, A. di Basco, N. Tsagarakis, A. Bicchi: A variable damping module for variable impedance actuation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 2666–2672

    Google Scholar 

  75. VIACTORS (Deutsches Zentrum für Luft- und Raumfahrt, Università di Pisa, Universiteit Twente, Imperial College London, Instituto Italiano di Tecnologia, Vrije Universiteit Brussel): Variable Impedance Actuators data sheets, http://www.viactors.org/VSA%20data%20sheets.htm (2011)

  76. G. Grioli, S. Wolf, O. Eiberger, W. Friedl, M. Grebenstein, H. Höppner, E. Burdet, D. Caldwell, R. Carloni, M. Catalano, D. Lefeber, S. Stramigioli, N. Tsagaratkis, M. Van Damme, R. Van Ham, B. Vanderborght, L.C. Visser, A. Bicchi, A. Albu-Schaeffer: Variable stiffness actuators: The user’s point of view, Int. J. Robotics Res. 34(6), 727–743 (2015)

    CrossRef  Google Scholar 

  77. S. Wolf, G. Grioli, W. Friedl, M. Grebenstein, H. Hoeppner, E. Burdet, D. Caldwell, A. Bicchi, S. Stramigioli, B. Vanderborght: Variable stiffness actuators: Review on design and components, IEEE/ASME Trans. Mechatron. PP(99), 1 (2015)

    Google Scholar 

  78. M. Krasnosel'skii, A. Pokrovskii: Systems with Hysteresis (Springer, Berlin, Heidelberg 1989)

    MATH  CrossRef  Google Scholar 

  79. A.G. Feldman: Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II: Controllable parameters of the musc1e, Biophysics 11, 565–578 (1966)

    Google Scholar 

  80. A.C. Antoulas: Approximation of Large-Scale Dynamical Systems (SIAM, Philadelphia 2005)

    MATH  CrossRef  Google Scholar 

  81. I. Fantoni, R. Lozano, M.W. Spong: Energy based control of the pendubot, IEEE Trans. Autom. Control 45(4), 725–729 (2000)

    MathSciNet  MATH  CrossRef  Google Scholar 

  82. A. Jafari, N. Tsagarakis, D. Caldwell: A novel intrinsically energy efficient development of a novel actuator with adjustable stiffness (awas), IEEE Trans. Mechatron. 18(1), 355–365 (2013)

    CrossRef  Google Scholar 

  83. A. De Luca: Decoupling and feedback linearization of robots with mixed rigid/elastic joints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 816–821

    CrossRef  Google Scholar 

  84. A. De Luca, P. Lucibello: A general algorithm for dynamic feedback linearization of robots with elastic joints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 504–510

    Google Scholar 

  85. M. Spong: Modeling and control of elastic joint robots, ASME J. Dyn. Syst. Meas. Control 109, 310–319 (1987)

    MATH  CrossRef  Google Scholar 

  86. A. Albu-Schffäer, S. Wolf, O. Eiberger, S. Haddadin, F. Petit, M. Chalon: Dynamic modeling and control of variable stiffness actuators, Proc. IEEE Conf. Robotics Autom. ICRA (2010) pp. 2155–2162

    Google Scholar 

  87. M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jörg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimböck, S. Wolf, T. Wusthoff, G. Hirzinger: The DLR hand arm system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Shanghai (2011) pp. 3175–3182

    Google Scholar 

  88. H.P. Olesen, R.B. Randall: A Guide to Mechanical Impedance and Structural Response Techniques, Tech. Rep. (Bruel and Kjaer, Noerum 1977)

    Google Scholar 

  89. H. Gomi, M. Kawato: Human arm stiffness and equilibrium-point trajectory during multi-joint movement, Biol. Cybern. 76(3), 163–171 (1997)

    MATH  CrossRef  Google Scholar 

  90. N. Hogan: Impedance Control: An approach to Manipulation – Parts I–III, J. Dyn. Syst. Meas. Control 107, 1–24 (1985)

    MATH  CrossRef  Google Scholar 

  91. F.A. Mussa-Ivaldi, N. Hogan, E. Bizzi: Neural, mechanical, and geometric factors subserving arm posture in humans, J. Neurosci. 5(10), 2732 (1985)

    CrossRef  Google Scholar 

  92. H. Gomi, R. Osu: Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments, J. Neurosci. 18(21), 8965 (1998)

    CrossRef  Google Scholar 

  93. E. Burdet, R. Osu, D.W. Franklin, T.E. Milner, M. Kawato: Measuring stiffness during arm movements in various dynamic environments, Proc. 1999 ASME Annu. Symp. Haptic Interfac. Virtual Environ. Teleoper. Syst. (1999) pp. 421–428

    Google Scholar 

  94. E. Burdet, R. Osu, D.W. Franklin, T. Yoshioka, T.E. Milner, M. Kawato: A method for measuring endpoint stiffness during multi-joint arm movements, J. Biomech. 33(12), 1705–1709 (2000)

    CrossRef  Google Scholar 

  95. D.W. Franklin, E. Burdet, R. Osu, M. Kawato, T.E. Milner: Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics, Exp. Brain Res. 151(2), 145–157 (2003)

    CrossRef  Google Scholar 

  96. K.P. Tee, E. Burdet, C.M. Chew, T.E. Milner: A model of force and impedance in human arm movements, Biol. Cybern. 90(5), 368–375 (2004)

    MATH  CrossRef  Google Scholar 

  97. E.J. Perreault, R.F. Kirsch, P.E. Crago: Multijoint dynamics and postural stability of the human arm, Exp. Brain Res. 157(4), 507–517 (2004)

    CrossRef  Google Scholar 

  98. R.D. Trumbower, M.A. Krutky, B.S. Yang, E.J. Perreault: Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks, PLoS ONE 4(5), e5411 (2009)

    CrossRef  Google Scholar 

  99. K. Hashimoto, T. Kureha, Y. Nishimura, K. Okumura, S. Muraoka: Measurement of mechanical impedance using quartz resonator force sensor during the process of grasping, SICE Annu. Conf., Vol. 1 (2004) pp. 722–726

    Google Scholar 

  100. A. Serio, G. Grioli, I. Sardellitti, N.G. Tsagarakis, A. Bicchi: A decoupled impedance observer for a variable stiffness robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 5548–5553

    Google Scholar 

  101. F. Flacco, A. De Luca, I. Sardellitti, N. Tsagarakis: On-line estimation of variable stiffness in flexible robot joints, Int. J. Robotics Res. 31(13), 1556–1577 (2012)

    CrossRef  Google Scholar 

  102. T. Ménard, G. Grioli, A. Bicchi: A real time observer for an agonist-antagonist variable stiffness actuator, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)

    Google Scholar 

  103. T. Ménard, G. Grioli, A. Bicchi: A stiffness estimator for agonistic-antagonistic variable-stiffness-actuator devices, IEEE Trans. Robotics 30(5), 1269–1278 (2014)

    CrossRef  Google Scholar 

  104. G. Grioli, A. Bicchi: A non-invasive real-time method for measuring variable stiffness, Proc. 10th Int. Conf. Robotics Sci. Syst., Zaragoza (2010)

    Google Scholar 

  105. J.K. Salisbury: Active stiffness control of a manipulator in cartesian coordinates, Proc. 19th IEEE Conf. Decis. Control (1980) pp. 83–88

    Google Scholar 

  106. C. Ott: Cartesian Impedance Control of Redundant and Flexible-Joint Robots, Springer Tracts. Adv. Robotics (Springer, Berlin, Heidelburg 2008)

    Google Scholar 

  107. N. Hogan: Mechanical impedance of single- and multi-articular systems. In: Multiple Muscle Systems, ed. by J.M. Winters, S.L.-Y. Woo (Springer, New York 1990) pp. 149–164

    CrossRef  Google Scholar 

  108. A. Albu-Schäffer, M. Fischer, G. Schreiber, F. Schoeppe, G. Hirzinger: Soft robotics: What cartesian stiffness can we obtain with passively compliant, uncoupled joints?, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004)

    Google Scholar 

  109. F. Petit, A. Albu-Schäffer: Cartesian impedance control for a variable stiffness robot arm, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011)

    Google Scholar 

  110. G. Palli, C. Melchiorri, A. De Luca: On the feedback linearization of robots with variable joint stiffness, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008)

    Google Scholar 

  111. A. De Luca, F. Flacco, A. Bicchi, R. Schiavi: Nonlinear decoupled motion-stiffness control and collision detection/reaction for the VSA-II variable stiffness device, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009)

    Google Scholar 

  112. G. Palli, C. Melchiorri: Output-based control of robots with variable stiffness actuation, J. Robotics (2011) doi:dx.doi.org/10.1155/2011/73540

    Google Scholar 

  113. A. Albu-Schäffer, C. Ott, F. Petit: Energy shaping control for a class of underactuated Euler-Lagrange systems, Proc. IFAC Symp. Robot Control (2012)

    Google Scholar 

  114. I. Sardellitti, G. Medrano-Cerda, N.G. Tsagarakis, A. Jafari, D.G. Caldwell: A position and stiffness control strategy for variable stiffness actuators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012)

    Google Scholar 

  115. F. Petit, A. Albu-Schäffer: State feedback damping control for a multi dof variable stiffness robot arm, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)

    Google Scholar 

  116. B. Vanderborght: Dynamic Stabilisation of the Biped Lucy Powered by Actuators with Controllable Stiffness, Ph.D. Thesis (Vrije Universiteit Brussel, Brussel 2007)

    Google Scholar 

  117. M. Uemura, S. Kawamura: Resonance-based motion control method for mulit-joint robot through combining stiffness adaptation and iterative learning control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009)

    Google Scholar 

  118. L.C. Visser, S. Stramigioli, A. Bicchi: Embodying desired behavior in variable stiffness actuators, Proc. IFAC Congr. Int. Fed. Autom. Control (2011)

    Google Scholar 

  119. D. Lakatos, F. Petit, A. Albu-Schäffer: Nonlinear oscillations for cyclic movements in variable impedance actuated robotic arms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 503–513

    Google Scholar 

  120. D. Lakatos, G. Garofalo, F. Petit, C. Ott, A. Albu-Schäffer: Modal limit cycle control for variable stiffness actuated robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)

    Google Scholar 

  121. A. Velasco, G.M. Gasparri, M. Garabini, L. Malagia, P. Salaris, A. Bicchi: Soft-actuators in cyclic motion: Analytical optimization of stiffness and pre-load, Proc. IEEE/RAS Int. Conf. Humanoid Robots, Atlanta (2013)

    Google Scholar 

  122. G. Garofalo, C. Ott, A. Albu-Schäffer: Orbital stabilization of mechanical systems through semidefinite Lyapunov functions, Proc. Am. Control Conf. (ACC) (2013)

    Google Scholar 

  123. D. Lakatos, F. Petit, A. Albu-Schäffer: Nonlinear oscillations for cyclic movements in human and robotic arms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 508–511

    Google Scholar 

  124. M. Papageorgiou: Optimierung: Statische, Dynamische, Stochastische Verfahren (Oldenbourg, Munich 1996)

    MATH  Google Scholar 

  125. A. Bicchi, G. Tonietti: Fast and soft arm tactics: Dealing with the safety-performance trade-off in robot arms design and control, IEEE Robotics Autom. Mag. 11(2), 22–33 (2004)

    CrossRef  Google Scholar 

  126. S. Haddadin, M.C. Özparpucu, A.A. Schäffer: Optimal control for maximizing potential energy in variable stiffness joints, Proc. 51st IEEE Conf. Decis. Control (CDC), Maui (2012)

    Google Scholar 

  127. S. Haddadin, M. C. Özparpucu, F. Huber, N. Mansfeld, A. Albu-Schäffer: Exploiting the natural dynamics of elastic joints for peak velocity, Int. J. Robotics Res. (2012)

    Google Scholar 

  128. M. Garabini, A. Passaglia, F. Belo, P. Salaris, A. Bicchi: Optimality principles in stiffness control: The vsa kick, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3341–3346

    Google Scholar 

  129. R. Incaini, L. Sestini, M. Garabini, M.G. Catalano, G. Grioli, A. Bicchi: Optimal control and design guidelines for soft jumping robots: Series elastic actuation and parallel elastic actuation in comparison, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 2477–2484

    Google Scholar 

  130. D. Garg, M.A. Patterson, W.W. Hager, A.V. Rao, D.A. Benson, G.T. Huntington: A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica 46(11), 1843–1851 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  131. W. Li, E. Todorov: Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system, Int. J. Control 80(9), 1439–1453 (2007)

    MathSciNet  MATH  CrossRef  Google Scholar 

  132. W. Li, E. Todorov: Iterative linear quadratic regulator design for nonlinear biological movement systems, Proc. Int. Conf. Inform. Control, Autom. Robotics (2004) pp. 222–229

    Google Scholar 

  133. S. Haddadin, F. Huber, A. Albu-Schaffer: Optimal control for exploiting the natural dynamics of variable stiffness robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3347–3354

    Google Scholar 

  134. D. Benson: A Gauss Pseudospectral Transcription for Optimal Control, Ph.D. Thesis (MIT, Cambridge 2005)

    Google Scholar 

  135. IEEE Robotics and Automation Society Technical Committee on Soft Robotics: http://www.ieee-ras.org/soft-robotics

  136. Natural Machine Motion Initiative: http://naturalmachinemotion.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bicchi .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Variable impedance actuators: Moving the robots of tomorrow available from http://handbookofrobotics.org/view-chapter/21/videodetails/456

:

Petman tests camo available from http://handbookofrobotics.org/view-chapter/21/videodetails/457

:

Introducing WildCat available from http://handbookofrobotics.org/view-chapter/21/videodetails/458

:

VSA CubeBot – peg in hole available from http://handbookofrobotics.org/view-chapter/21/videodetails/460

:

DLR Hand Arm System smashed with baseball bat available from http://handbookofrobotics.org/view-chapter/21/videodetails/461

:

Safety evaluation of lightweight robots available from http://handbookofrobotics.org/view-chapter/21/videodetails/463

:

Hammering task with the DLR Hand Arm System available from http://handbookofrobotics.org/view-chapter/21/videodetails/464

:

Dynamic walking of whole-body compliant humanoid COMAN available from http://handbookofrobotics.org/view-chapter/21/videodetails/465

:

Dynamic walking of whole-body compliant humanoid COMAN available from http://handbookofrobotics.org/view-chapter/21/videodetails/466

:

Maccepa System available from http://handbookofrobotics.org/view-chapter/21/videodetails/467

:

AMASC – changing stiffness available from http://handbookofrobotics.org/view-chapter/21/videodetails/468

:

VSA-Cube: Arm with high and low stiffness preset available from http://handbookofrobotics.org/view-chapter/21/videodetails/470

:

CompAct™ robotics technology available from http://handbookofrobotics.org/view-chapter/21/videodetails/471

:

VSA-Cube arm: Drawing on a wavy surface (high stiffness) available from http://handbookofrobotics.org/view-chapter/21/videodetails/472

:

Arm drawing on a wavy surface (low stiffness) available from http://handbookofrobotics.org/view-chapter/21/videodetails/473

:

Arm drawing on a wavy surface (selective stiffness) available from http://handbookofrobotics.org/view-chapter/21/videodetails/474

:

Intrinsically elastic robots: The key to human like performance (Best Video Award) available from http://handbookofrobotics.org/view-chapter/21/videodetails/475

:

DLR Hand Arm System: Punching holes available from http://handbookofrobotics.org/view-chapter/21/videodetails/546

:

DLR Hand Arm System throwing a ball and Justin catching it available from http://handbookofrobotics.org/view-chapter/21/videodetails/547

:

Active damping control on the DLR Hand Arm System available from http://handbookofrobotics.org/view-chapter/21/videodetails/548

:

Throwing a ball with the DLR VS-Joint available from http://handbookofrobotics.org/view-chapter/21/videodetails/549

:

DLR Hand Arm System: Two arm manipulation available from http://handbookofrobotics.org/view-chapter/21/videodetails/550

:

Full body compliant humanoid COMAN available from http://handbookofrobotics.org/view-chapter/21/videodetails/698

:

AWAS-II available from http://handbookofrobotics.org/view-chapter/21/videodetails/699

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albu-Schäffer, A., Bicchi, A. (2016). Actuators for Soft Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)