Actuators for Soft Robotics

Part of the Springer Handbooks book series (SHB)


Although we do not know as yet how robots of the future will look like exactly, most of us are sure that they will not resemble the heavy, bulky, rigid machines dangerously moving around in old-fashioned industrial automation. There is a growing consensus, in the research community as well as in expectations from the public, that robots of the next generation will be physically compliant and adaptable machines, closely interacting with humans and moving safely, smoothly and efficiently – in other terms, robots will be soft.

This chapter discusses the design, modeling and control of actuators for the new generation of soft robots, which can replace conventional actuators in applications where rigidity is not the first and foremost concern in performance. The chapter focuses on the technology, modeling, and control of lumped parameters of soft robotics, that is, systems of discrete, interconnected, and compliant elements. Distributed parameters, snake-like and continuum soft robotics, are presented in Chap.  20, while Chap.  23 discusses in detail the biomimetic motivations that are often behind soft robotics.


Humanoid Robot Ionic Polymer Metal Composite Continuous Variable Transmission Variable Stiffness Tool Center Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



actuator with mechanically adjustable series compliance


ceramic matrix composite


carbon nanotube


continuous variable transmission


degree of freedom


electroactive polymer


eddy current damper




friction damper


iterative linear quadratic regulator


ionic polymer-metal composite


kinetic energy recovery system


linear quadratic regulator


light-weight robot


mechanically adjustable compliance and controllable equilibrium position actuator


microelectromechanical system


mechanical impedance adjuster


metal matrix composite




natural machine motion initiative


optimal control


ordinary differential equation


pneumatic artificial muscle




lead lanthanum zirconate titanate


polymer matrix composite




polyvinylidene fluoride


lead zirconate titanate


series elastic actuator


shape memory alloy


shape memory polymer


tool center point


variable impedance actuator


variable stiffness joint


variable stiffness actuator


whole-arm manipulator


  1. 21.1
    K.T. Ulrich, T.T. Tuttle, J.P. Donoghue, W.T. Townsend: Intrinsically Safer Robots, Tech. Rep. (Barrett Technology Inc., Cambridge 1995), Final Report for NASA Contract NAS10-12178Google Scholar
  2. 21.2
    B. Lacevic, P. Rocco: Safety-oriented control of robotic manipulators – A kinematic approach, Proc. 18th World Congr. Int. Fed. Autom. Control (IFAC) (2011)Google Scholar
  3. 21.3
    S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R. Burgkart, A. Bicchi, A. Albu-Schaeffer: On making robots understand safety: Embedding injury knowledge into control, Int. J. Robotics Res. 31, 1578–1602 (2012)CrossRefGoogle Scholar
  4. 21.4
    K. Salisbury, W. Townsend, B. Eberman, D. DiPietro: Preliminary design of a whole-arm manipulation system (WAMS), Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Philadelphia (1988) pp. 254–260Google Scholar
  5. 21.5
    G. Hirzinger, A. Albu-Schäffer, M. Hähnle, I. Schaefer, N. Sporer: On a new generation of torque controlled light-weight robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2001) pp. 3356–3363Google Scholar
  6. 21.6
    K. Yokoi, F. Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, H. Hirukawa: Experimental study of humanoid robot HRP-1S, Int. J. Robotics Res. 23(4/5), 351–362 (2004)CrossRefGoogle Scholar
  7. 21.7
    K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, S. Kajita: Cybernetic human HRP-4C, Proc. IEEE/RAS Int. Conf. Humanoid Robots (2009) pp. 7–14Google Scholar
  8. 21.8
    Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura: The intelligent asimo: System overview and integration, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vol. 3 (2002) pp. 2478–2483CrossRefGoogle Scholar
  9. 21.9
    M. Hirose, K. Ogawa: Honda humanoid robots development, Phil. Trans. Roy. Soc. A 365(1850), 11–19 (2007)CrossRefGoogle Scholar
  10. 21.10
    B. Vanderborght, B. Verrelst, R. Van Ham, M. Van Damme, D. Lefeber: A pneumatic biped: Experimental walking results and compliance adaptation experiments, Proc. Int. Conf. Humanoid Robots, Tsukuba (2006)Google Scholar
  11. 21.11
    T. Takuma, K. Hosoda, M. Ogino, M. Asada: Stabilization of quasi-passive pneumatic muscle walker, Proc. IEEE/RAS Int. Conf. Humanoid Robots, Vol. 2 (2004) pp. 627–639Google Scholar
  12. 21.12
    S.H. Collins, A. Ruina: A bipedal walking robot with efficient and human-like gait, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 1983–1988Google Scholar
  13. 21.13
    N.G. Tsagarakis, S. Morfey, G. Medrano-Cerda, Z. Li, D.G. Caldwell: Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control, Proc. IEEE Int. Conf. Robotics Autom. (2013) pp. 665–670Google Scholar
  14. 21.14
    J.W. Hurst, J.E. Chestnutt, A.A. Rizzi: An Actuator with Mechanically Adjustable Series Compliance, CMU-RI-TR-04-24 (Robotics Inst./Carnegie Mellon University, Pittsburgh 2004)Google Scholar
  15. 21.15
    L.C. Visser, S. Stramigioli, R. Carloni: Robust bipedal walking with variable leg stiffness, Proc. 4th IEEE/RAS/EMBS Int. Conf. Biomed. Robotics Biomechatron. (BioRob) (2012) pp. 1626–1631Google Scholar
  16. 21.16
    S. Haddadin, M.C. Ozparpucu, A. Albu-Schäffer: Optimal control for maximizing potential energy in a variable stiffness joint, Proc. 51st IEEE Annu. Conf. Decis. Control (CDC) (2012) pp. 1199–1206Google Scholar
  17. 21.17
    M. Garabini, A. Passaglia, F.A.W. Belo, P. Salaris, A. Bicchi: Optimality principles in variable stiff- ness control: The VSA hammer, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), San Francisco (2011) pp. 1843–1851Google Scholar
  18. 21.18
    A.G. Feldman: Once more on the equilibrium-point hypothesis (λ model) for motor control, J. Mot. Behav. 18, 17–54 (1986)CrossRefGoogle Scholar
  19. 21.19
    J.R. Flanagan, A.M. Wing: Modulation of grip force with load force during point-to-point arm movements, Exp. Brain Res. 95, 131–143 (1993)CrossRefGoogle Scholar
  20. 21.20
    J. Won, N. Hogan: Stability properties of human reaching movements, Exp. Brain Res. 107(1), 125–136 (1995)CrossRefGoogle Scholar
  21. 21.21
    P.L. Gribble, D.J. Ostry, V. Sanguineti, R. Laboissière: Are complex control signals required for human arm movement?, J. Neurophysiol. 79, 1409–1424 (1998)Google Scholar
  22. 21.22
    J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, I.W. Hunter: Artificial muscle technology: Physical principles and naval prospects, IEEE J. Ocean. Eng. 29(3), 706–728 (2004)CrossRefGoogle Scholar
  23. 21.23
    A. Parr: Hydraulics and Pneumatics: A Technician's and Engineer's Guide (Butterworth-Heinemann, Oxford 1998)Google Scholar
  24. 21.24
    I.L. Krivts, G.V. Krejnin: Pneumatic Actuating Systems for Automatic Equipment: Structure and Design (CRC, Boca Raton 2006)CrossRefGoogle Scholar
  25. 21.25
    H.A. Baldwin: Realizable models of muscle function, Proc. 1st Rock Biomech. Symp. (1969) pp. 139–148Google Scholar
  26. 21.26
    K. Inoue: Rubbertuators and applications for robots, Proc. 4th Int. Symp. Robotics Res. (1987) pp. 57–63Google Scholar
  27. 21.27
    B. Hannaford, J.M. Winters, C.-P. Chou, P.H. Marbot: The anthroform biorobotic arm: A system for the study of spinal circuits, Ann. Biomed. Eng. 23, 399–408 (1995)CrossRefGoogle Scholar
  28. 21.28
    D.G. Caldwell, G.A. Medrano-Cerda, M. Goodwin: Control of pneumatic muscle actuators, IEEE Control Syst. Mag. 15(1), 40–48 (1995)CrossRefGoogle Scholar
  29. 21.29
    T. Hesselroth, K. Sarkar, P.P. van der Smagt, K. Schulten: Neural network control of a pneumatic robot arm, IEEE Trans. Syst. Man Cybern. 24(1), 28–38 (1994)CrossRefGoogle Scholar
  30. 21.30
    A. Bicchi, S.L. Rizzini, G. Tonietti: Compliant design for intrinsic safety: General issues and preliminary design, Proc. IEEE Int. Symp. Intell. Robots Syst. (IROS), Maui (2001) pp. 1864–1869Google Scholar
  31. 21.31
    F. Daerden, D. Lefeber: The concept and design of pleated pneumatic artificial muscles, Int. J. Fluid Power 2(3), 41–50 (2001)CrossRefGoogle Scholar
  32. 21.32
    B. Verrelst, R. Van Ham, B. Vanderborght, D. Lefeber, F. Daerden, M. Van Damme: Second generation pleated pneumatic artificial muscle and its robotic applications, Adv. Robotics 20(7), 783–805 (2006)CrossRefGoogle Scholar
  33. 21.33
    I.M. Gottlieb: Practical Electric Motor Handbook (Butterworth-Heinemann, Oxford 1997)Google Scholar
  34. 21.34
    J.F. Gieras, M. Wing: Permanent Magnet Motor Technology: Design and Applications (CRC, Boca Raton 2002)Google Scholar
  35. 21.35
    M. Gad-el Hak: The MEMS Handbook: MEMS, Design and Fabrication (CRC, Boca Raton 2006)zbMATHGoogle Scholar
  36. 21.36
    K. Uchino: Piezoelectric Actuators and Ultrasonic Motors (Kluwer, Boston 1997)Google Scholar
  37. 21.37
    S.-C. Huang, W.-L. Chen: Design of topologically optimal microgripper, IEEE Int. Conf. Syst. Man Cybern. (2008)Google Scholar
  38. 21.38
    J. Ueda, T. Secord, H. Asada: Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms, IEEE/ASME Trans. Mechatron. 15, 770–782 (2010)CrossRefGoogle Scholar
  39. 21.39
    J. Schultz, J. Ueda: Two-port network models for compliant rhomboidal strain amplifiers, IEEE Trans. Robotics 29(1), 42–54 (2013)CrossRefGoogle Scholar
  40. 21.40
    J. Schultz, J. Ueda: Nested piezoelectric cellular actuators for a biologically inspired camera positioning mechanism, IEEE Trans. Robotics 29(5), 1–14 (2013)CrossRefGoogle Scholar
  41. 21.41
    J. Schultz, J. Ueda: Experimental verification of discrete switching vibration suppression, IEEE/ASME Trans. Mechatron. 17(2), 298–308 (2012)CrossRefGoogle Scholar
  42. 21.42
    G. Engdahl: Handbook of Giant Magnetostrictive Materials (Academic, San Diego 2000)Google Scholar
  43. 21.43
    D.C. Lagoudas: Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York 2008)zbMATHGoogle Scholar
  44. 21.44
    E. Torres-Jara, K. Gilpin, J. Karges, R.J. Wood, D. Rus: Composable flexible small actuators built from thin shape memory alloy sheets, IEEE Robotics Autom. Mag. 17(4), 78–87 (2010)CrossRefGoogle Scholar
  45. 21.45
    L. Jinsong: Shape-Memory Polymers and Multifunctional Composites (CRC, Boca Raton 2009)Google Scholar
  46. 21.46
    F. Carpi, E. Smela: Biomedical Applications of Electroactive Polymer Actuators (Wiley, Chichester 2009)CrossRefGoogle Scholar
  47. 21.47
    P. Brochu, Q. Pei: Advances in dielectric elastomers for actuators and artificial muscles, Macromol. Rapid Commun. 31(1), 10–36 (2010)CrossRefGoogle Scholar
  48. 21.48
    H.S. Nalwa: Ferroelectric Polymers: Chemistry, Physics, and Applications (CRC, Boca Raton 1995)Google Scholar
  49. 21.49
    F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, Amsterdan 2008)Google Scholar
  50. 21.50
    G. Fernandez: Liquid-crystal polymers: Exotic actuators, Nat. Mater. 12(1), 12–14 (2013)CrossRefGoogle Scholar
  51. 21.51
    R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz: Carbon nanotube actuators, Science 284(5418), 1340–1344 (1999)CrossRefGoogle Scholar
  52. 21.52
    A.E. Aliev, J. Oh, M.E. Kozlov, A.A. Kuznetsov, S. Fang, A.F. Fonseca, R. Ovalle, M.D. Lima, M.H. Haque, Y.N. Gartstein, M. Zhang, A.A. Zakhidov, R.H. Baughman: Giant-stroke, superelastic carbon nanotube aerogel muscles, Science 323(5921), 1575–1578 (2009)CrossRefGoogle Scholar
  53. 21.53
    J.D.W. Madden: Stiffer than steel, Science 323(5921), 1571–1572 (2009)CrossRefGoogle Scholar
  54. 21.54
    E. Guglielmino, C.W. Stammers, K.A. Edge, T. Sireteanu, D. Stancioiu: Damp-by-wire: Magnetorheological vs friction dampers, Proc. 16th IFAC World Cong. (2005) pp. 340–345Google Scholar
  55. 21.55
    M. Laffranchi, N.G. Tsagarakis, D.G. Caldwell: A variable physical damping actuator (VPDA) for compliant robotic joints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 1668–1674Google Scholar
  56. 21.56
    J.C. Dixon: The Shock Absorber Handbook, Senior Lect. Eng. Mech. (Wiley, Chichester 2007)CrossRefGoogle Scholar
  57. 21.57
    J. Li, D. Jin, X. Zhang, J. Zhang, W.A. Gruver: An electrorheological fluid damper for robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1995) pp. 2631–2636Google Scholar
  58. 21.58
    C.-M. Chew, G.-S. Hong, W. Zhou: Series damper actuator: A novel force control actuator, Proc. 4th IEEE/RAS Int. Conf. Humanoid Robots (2004) pp. 533–546Google Scholar
  59. 21.59
    B. Ebrahimi, M.B. Khamesee, F. Golnaraghi: A novel eddy current damper: Theory and experiment, J. Phys. D Appl. Phys. 42(7), 075001 (2009)CrossRefGoogle Scholar
  60. 21.60
    H.A. Sodano, J.-S. Bae, D. Inman, K. Belvin: Improved concept and model of eddy current damper, J. Vib. Acoust. 128(3), 294–302 (2006)CrossRefGoogle Scholar
  61. 21.61
    G.A. Pratt, M.M. Williamson: Series elastic actuators, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. Hum. Robot Interact. Coop. Robots, Vol. 1 (1995) pp. 399–406Google Scholar
  62. 21.62
    M.L. Latash: Motor synergies and the equilibrium-point, Mot. Control 14(3), 294–322 (2010)MathSciNetCrossRefGoogle Scholar
  63. 21.63
    T. Morita, S. Sugano: Development and evaluation of seven-d.o.f. mia arm, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1997) pp. 462–467CrossRefGoogle Scholar
  64. 21.64
    J.W. Hurst, J. Chestnutt, A. Rizzi: An actuator with physically variable stiffness for highly dynamic legged locomotion, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2004) pp. 4662–4667Google Scholar
  65. 21.65
    R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst, D. Lefeber: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot, Robotics Auton. Syst. 55(10), 761–768 (2007)CrossRefGoogle Scholar
  66. 21.66
    S. Wolf, G. Hirzinger: A new variable stiffness design: Matching requirements of the next robot generation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008) pp. 1741–1746Google Scholar
  67. 21.67
    N. Hogan: Adaptive control of mechanical impedance by coactivation of antagonist muscles, IEEE Trans. Autom. Control AC-29(8), 681–690 (1984)zbMATHCrossRefGoogle Scholar
  68. 21.68
    S.A. Migliore, E.A. Brown, S.P. DeWeerth: Biologically inspired joint stiffness control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 4519–4524Google Scholar
  69. 21.69
    G. Tonietti, R. Schiavi, A. Bicchi: Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2005) pp. 528–533Google Scholar
  70. 21.70
    M.G. Catalano, G. Grioli, M. Garabini, F. Bonomo, M. Mancinit, N. Tsagarakis, A. Bicchi: Vsa-cubebot: A modular variable stiffness platform for multiple degrees of freedom robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 5090–5095Google Scholar
  71. 21.71
    A. Bicchi, G. Tonietti: Fast and soft-arm tactics, IEEE Robotics Autom. Mag. 11(2), 22–33 (2004)CrossRefGoogle Scholar
  72. 21.72
    A. Albu-Schäffer, S. Wolf, O. Eiberger, S. Haddadin, F. Petit, M. Chalon: Dynamic modelling and control of variable stiffness actuators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2010) pp. 2155–2162Google Scholar
  73. 21.73
    A.H.C. Gosline, V. Hayward: Eddy current brakes for haptic interfaces: Design, identification, and control, IEEE/ASME Trans, Mechatron. 13(6), 669–677 (2008)CrossRefGoogle Scholar
  74. 21.74
    M. Catalano, G. Grioli, M. Garabini, F.W. Belo, A. di Basco, N. Tsagarakis, A. Bicchi: A variable damping module for variable impedance actuation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 2666–2672Google Scholar
  75. 21.75
    VIACTORS (Deutsches Zentrum für Luft- und Raumfahrt, Università di Pisa, Universiteit Twente, Imperial College London, Instituto Italiano di Tecnologia, Vrije Universiteit Brussel): Variable Impedance Actuators data sheets, (2011)
  76. 21.76
    G. Grioli, S. Wolf, O. Eiberger, W. Friedl, M. Grebenstein, H. Höppner, E. Burdet, D. Caldwell, R. Carloni, M. Catalano, D. Lefeber, S. Stramigioli, N. Tsagaratkis, M. Van Damme, R. Van Ham, B. Vanderborght, L.C. Visser, A. Bicchi, A. Albu-Schaeffer: Variable stiffness actuators: The user’s point of view, Int. J. Robotics Res. 34(6), 727–743 (2015)CrossRefGoogle Scholar
  77. 21.77
    S. Wolf, G. Grioli, W. Friedl, M. Grebenstein, H. Hoeppner, E. Burdet, D. Caldwell, A. Bicchi, S. Stramigioli, B. Vanderborght: Variable stiffness actuators: Review on design and components, IEEE/ASME Trans. Mechatron. PP(99), 1 (2015)Google Scholar
  78. 21.78
    M. Krasnosel'skii, A. Pokrovskii: Systems with Hysteresis (Springer, Berlin, Heidelberg 1989)zbMATHCrossRefGoogle Scholar
  79. 21.79
    A.G. Feldman: Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II: Controllable parameters of the musc1e, Biophysics 11, 565–578 (1966)Google Scholar
  80. 21.80
    A.C. Antoulas: Approximation of Large-Scale Dynamical Systems (SIAM, Philadelphia 2005)zbMATHCrossRefGoogle Scholar
  81. 21.81
    I. Fantoni, R. Lozano, M.W. Spong: Energy based control of the pendubot, IEEE Trans. Autom. Control 45(4), 725–729 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 21.82
    A. Jafari, N. Tsagarakis, D. Caldwell: A novel intrinsically energy efficient development of a novel actuator with adjustable stiffness (awas), IEEE Trans. Mechatron. 18(1), 355–365 (2013)CrossRefGoogle Scholar
  83. 21.83
    A. De Luca: Decoupling and feedback linearization of robots with mixed rigid/elastic joints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 816–821CrossRefGoogle Scholar
  84. 21.84
    A. De Luca, P. Lucibello: A general algorithm for dynamic feedback linearization of robots with elastic joints, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 504–510Google Scholar
  85. 21.85
    M. Spong: Modeling and control of elastic joint robots, ASME J. Dyn. Syst. Meas. Control 109, 310–319 (1987)zbMATHCrossRefGoogle Scholar
  86. 21.86
    A. Albu-Schffäer, S. Wolf, O. Eiberger, S. Haddadin, F. Petit, M. Chalon: Dynamic modeling and control of variable stiffness actuators, Proc. IEEE Conf. Robotics Autom. ICRA (2010) pp. 2155–2162Google Scholar
  87. 21.87
    M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jörg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimböck, S. Wolf, T. Wusthoff, G. Hirzinger: The DLR hand arm system, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Shanghai (2011) pp. 3175–3182Google Scholar
  88. 21.88
    H.P. Olesen, R.B. Randall: A Guide to Mechanical Impedance and Structural Response Techniques, Tech. Rep. (Bruel and Kjaer, Noerum 1977)Google Scholar
  89. 21.89
    H. Gomi, M. Kawato: Human arm stiffness and equilibrium-point trajectory during multi-joint movement, Biol. Cybern. 76(3), 163–171 (1997)zbMATHCrossRefGoogle Scholar
  90. 21.90
    N. Hogan: Impedance Control: An approach to Manipulation – Parts I–III, J. Dyn. Syst. Meas. Control 107, 1–24 (1985)zbMATHCrossRefGoogle Scholar
  91. 21.91
    F.A. Mussa-Ivaldi, N. Hogan, E. Bizzi: Neural, mechanical, and geometric factors subserving arm posture in humans, J. Neurosci. 5(10), 2732 (1985)Google Scholar
  92. 21.92
    H. Gomi, R. Osu: Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments, J. Neurosci. 18(21), 8965 (1998)Google Scholar
  93. 21.93
    E. Burdet, R. Osu, D.W. Franklin, T.E. Milner, M. Kawato: Measuring stiffness during arm movements in various dynamic environments, Proc. 1999 ASME Annu. Symp. Haptic Interfac. Virtual Environ. Teleoper. Syst. (1999) pp. 421–428Google Scholar
  94. 21.94
    E. Burdet, R. Osu, D.W. Franklin, T. Yoshioka, T.E. Milner, M. Kawato: A method for measuring endpoint stiffness during multi-joint arm movements, J. Biomech. 33(12), 1705–1709 (2000)CrossRefGoogle Scholar
  95. 21.95
    D.W. Franklin, E. Burdet, R. Osu, M. Kawato, T.E. Milner: Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics, Exp. Brain Res. 151(2), 145–157 (2003)CrossRefGoogle Scholar
  96. 21.96
    K.P. Tee, E. Burdet, C.M. Chew, T.E. Milner: A model of force and impedance in human arm movements, Biol. Cybern. 90(5), 368–375 (2004)zbMATHCrossRefGoogle Scholar
  97. 21.97
    E.J. Perreault, R.F. Kirsch, P.E. Crago: Multijoint dynamics and postural stability of the human arm, Exp. Brain Res. 157(4), 507–517 (2004)CrossRefGoogle Scholar
  98. 21.98
    R.D. Trumbower, M.A. Krutky, B.S. Yang, E.J. Perreault: Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks, PLoS ONE 4(5), e5411 (2009)CrossRefGoogle Scholar
  99. 21.99
    K. Hashimoto, T. Kureha, Y. Nishimura, K. Okumura, S. Muraoka: Measurement of mechanical impedance using quartz resonator force sensor during the process of grasping, SICE Annu. Conf., Vol. 1 (2004) pp. 722–726Google Scholar
  100. 21.100
    A. Serio, G. Grioli, I. Sardellitti, N.G. Tsagarakis, A. Bicchi: A decoupled impedance observer for a variable stiffness robot, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011) pp. 5548–5553Google Scholar
  101. 21.101
    F. Flacco, A. De Luca, I. Sardellitti, N. Tsagarakis: On-line estimation of variable stiffness in flexible robot joints, Int. J. Robotics Res. 31(13), 1556–1577 (2012)CrossRefGoogle Scholar
  102. 21.102
    T. Ménard, G. Grioli, A. Bicchi: A real time observer for an agonist-antagonist variable stiffness actuator, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)Google Scholar
  103. 21.103
    T. Ménard, G. Grioli, A. Bicchi: A stiffness estimator for agonistic-antagonistic variable-stiffness-actuator devices, IEEE Trans. Robotics 30(5), 1269–1278 (2014)CrossRefGoogle Scholar
  104. 21.104
    G. Grioli, A. Bicchi: A non-invasive real-time method for measuring variable stiffness, Proc. 10th Int. Conf. Robotics Sci. Syst., Zaragoza (2010)Google Scholar
  105. 21.105
    J.K. Salisbury: Active stiffness control of a manipulator in cartesian coordinates, Proc. 19th IEEE Conf. Decis. Control (1980) pp. 83–88Google Scholar
  106. 21.106
    C. Ott: Cartesian Impedance Control of Redundant and Flexible-Joint Robots, Springer Tracts. Adv. Robotics (Springer, Berlin, Heidelburg 2008)Google Scholar
  107. 21.107
    N. Hogan: Mechanical impedance of single- and multi-articular systems. In: Multiple Muscle Systems, ed. by J.M. Winters, S.L.-Y. Woo (Springer, New York 1990) pp. 149–164CrossRefGoogle Scholar
  108. 21.108
    A. Albu-Schäffer, M. Fischer, G. Schreiber, F. Schoeppe, G. Hirzinger: Soft robotics: What cartesian stiffness can we obtain with passively compliant, uncoupled joints?, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004)Google Scholar
  109. 21.109
    F. Petit, A. Albu-Schäffer: Cartesian impedance control for a variable stiffness robot arm, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011)Google Scholar
  110. 21.110
    G. Palli, C. Melchiorri, A. De Luca: On the feedback linearization of robots with variable joint stiffness, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2008)Google Scholar
  111. 21.111
    A. De Luca, F. Flacco, A. Bicchi, R. Schiavi: Nonlinear decoupled motion-stiffness control and collision detection/reaction for the VSA-II variable stiffness device, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2009)Google Scholar
  112. 21.112
    G. Palli, C. Melchiorri: Output-based control of robots with variable stiffness actuation, J. Robotics (2011) Scholar
  113. 21.113
    A. Albu-Schäffer, C. Ott, F. Petit: Energy shaping control for a class of underactuated Euler-Lagrange systems, Proc. IFAC Symp. Robot Control (2012)Google Scholar
  114. 21.114
    I. Sardellitti, G. Medrano-Cerda, N.G. Tsagarakis, A. Jafari, D.G. Caldwell: A position and stiffness control strategy for variable stiffness actuators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012)Google Scholar
  115. 21.115
    F. Petit, A. Albu-Schäffer: State feedback damping control for a multi dof variable stiffness robot arm, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2011)Google Scholar
  116. 21.116
    B. Vanderborght: Dynamic Stabilisation of the Biped Lucy Powered by Actuators with Controllable Stiffness, Ph.D. Thesis (Vrije Universiteit Brussel, Brussel 2007)Google Scholar
  117. 21.117
    M. Uemura, S. Kawamura: Resonance-based motion control method for mulit-joint robot through combining stiffness adaptation and iterative learning control, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2009)Google Scholar
  118. 21.118
    L.C. Visser, S. Stramigioli, A. Bicchi: Embodying desired behavior in variable stiffness actuators, Proc. IFAC Congr. Int. Fed. Autom. Control (2011)Google Scholar
  119. 21.119
    D. Lakatos, F. Petit, A. Albu-Schäffer: Nonlinear oscillations for cyclic movements in variable impedance actuated robotic arms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 503–513Google Scholar
  120. 21.120
    D. Lakatos, G. Garofalo, F. Petit, C. Ott, A. Albu-Schäffer: Modal limit cycle control for variable stiffness actuated robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013)Google Scholar
  121. 21.121
    A. Velasco, G.M. Gasparri, M. Garabini, L. Malagia, P. Salaris, A. Bicchi: Soft-actuators in cyclic motion: Analytical optimization of stiffness and pre-load, Proc. IEEE/RAS Int. Conf. Humanoid Robots, Atlanta (2013)Google Scholar
  122. 21.122
    G. Garofalo, C. Ott, A. Albu-Schäffer: Orbital stabilization of mechanical systems through semidefinite Lyapunov functions, Proc. Am. Control Conf. (ACC) (2013)Google Scholar
  123. 21.123
    D. Lakatos, F. Petit, A. Albu-Schäffer: Nonlinear oscillations for cyclic movements in human and robotic arms, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 508–511Google Scholar
  124. 21.124
    M. Papageorgiou: Optimierung: Statische, Dynamische, Stochastische Verfahren (Oldenbourg, Munich 1996)zbMATHGoogle Scholar
  125. 21.125
    A. Bicchi, G. Tonietti: Fast and soft arm tactics: Dealing with the safety-performance trade-off in robot arms design and control, IEEE Robotics Autom. Mag. 11(2), 22–33 (2004)CrossRefGoogle Scholar
  126. 21.126
    S. Haddadin, M.C. Özparpucu, A.A. Schäffer: Optimal control for maximizing potential energy in variable stiffness joints, Proc. 51st IEEE Conf. Decis. Control (CDC), Maui (2012)Google Scholar
  127. 21.127
    S. Haddadin, M. C. Özparpucu, F. Huber, N. Mansfeld, A. Albu-Schäffer: Exploiting the natural dynamics of elastic joints for peak velocity, Int. J. Robotics Res. (2012)Google Scholar
  128. 21.128
    M. Garabini, A. Passaglia, F. Belo, P. Salaris, A. Bicchi: Optimality principles in stiffness control: The vsa kick, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3341–3346Google Scholar
  129. 21.129
    R. Incaini, L. Sestini, M. Garabini, M.G. Catalano, G. Grioli, A. Bicchi: Optimal control and design guidelines for soft jumping robots: Series elastic actuation and parallel elastic actuation in comparison, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2013) pp. 2477–2484Google Scholar
  130. 21.130
    D. Garg, M.A. Patterson, W.W. Hager, A.V. Rao, D.A. Benson, G.T. Huntington: A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica 46(11), 1843–1851 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  131. 21.131
    W. Li, E. Todorov: Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system, Int. J. Control 80(9), 1439–1453 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  132. 21.132
    W. Li, E. Todorov: Iterative linear quadratic regulator design for nonlinear biological movement systems, Proc. Int. Conf. Inform. Control, Autom. Robotics (2004) pp. 222–229Google Scholar
  133. 21.133
    S. Haddadin, F. Huber, A. Albu-Schaffer: Optimal control for exploiting the natural dynamics of variable stiffness robots, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2012) pp. 3347–3354Google Scholar
  134. 21.134
    D. Benson: A Gauss Pseudospectral Transcription for Optimal Control, Ph.D. Thesis (MIT, Cambridge 2005)Google Scholar
  135. 21.135
    IEEE Robotics and Automation Society Technical Committee on Soft Robotics:
  136. 21.136
    Natural Machine Motion Initiative:

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.DLR Institute of Robotics and MechatronicsWesslingGermany
  2. 2.Interdepartmental Research Center “E. Piaggio”University of PisaPisaItaly

Personalised recommendations