Skip to main content

Robot Learning

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Machine learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer behaviors; conversely, the challenges of robotic problems provide both inspiration, impact, and validation for developments in robot learning. The relationship between disciplines has sufficient promise to be likened to that between physics and mathematics. In this chapter, we attempt to strengthen the links between the two research communities by providing a survey of work in robot learning for learning control and behavior generation in robots. We highlight both key challenges in robot learning as well as notable successes. We discuss how contributions tamed the complexity of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As a result, a particular focus of our chapter lies on model learning for control and robot reinforcement learning. We demonstrate how machine learning approaches may be profitably applied, and we note throughout open questions and the tremendous potential for future research.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMAC:

cerebellar model articulation controller

DDP:

differential dynamic programming

MDP:

Markov decision process

MPC:

model predictive control

MRAC:

model reference adaptive control

OSC:

operational-space control

PD:

proportional–derivative

REINFORCE:

reward increment = nonnegative factor × offset reinforcement × characteristic eligibility

RL:

reinforcement learning

SARSA:

state action-reward-state-action

SVD:

singular value decomposition

SVR:

support vector regression

ZMP:

zero moment point

References

  1. S. Schaal: The new robotics – Towards human-centered machines, HFSP J. Front. Interdiscip. Res, Life Sci. 1(2), 115–126 (2007)

    Google Scholar 

  2. B.D. Ziebart, A. Maas, J.A. Bagnell, A.K. Dey: Maximum entropy inverse reinforcement learning, AAAI Conf. Artif. Intell. (2008)

    Google Scholar 

  3. S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT, Cambridge 2005)

    MATH  Google Scholar 

  4. B. Apolloni, A. Ghosh, F. Alpaslan, L.C. Jain, S. Patnaik (Eds.): Machine Learning and Robot Perception, Stud. Comput. Intell., Vol. 7 (Springer, Berlin, Heidelberg 2005)

    MATH  Google Scholar 

  5. O. Jenkins, R. Bodenheimer, R. Peters: Manipulation manifolds: Explorations into uncovering manifolds in sensory-motor spaces, Int. Conf. Dev. Learn. (2006)

    Google Scholar 

  6. M. Toussaint: Machine learning and robotics, Tutor. Conf. Mach. Learn. (2011)

    Google Scholar 

  7. D.P. Bertsekas: Dynamic Programming and Optimal Control (Athena Scientific, Nashua 1995)

    MATH  Google Scholar 

  8. R.E. Kalman: When is a linear control system optimal?, J. Basic Eng. 86(1), 51–60 (1964)

    Article  Google Scholar 

  9. D. Nguyen-Tuong, J. Peters: Model learning in robotics: A survey, Cogn. Process. 12(4), 319–340 (2011)

    Article  Google Scholar 

  10. J. Kober, D. Bagnell, J. Peters: Reinforcement learning in robotics: A survey, Int. J. Robotics Res. 32(11), 1238–1274 (2013)

    Article  Google Scholar 

  11. J.H. Connell, S. Mahadevan: Robot Learning (Kluwer Academic, Dordrecht 1993)

    Book  MATH  Google Scholar 

  12. J. Ham, Y. Lin, D.D. Lee: Learning nonlinear appearance manifolds for robot localization, Int. Conf. Intell. Robots Syst. (2005)

    Google Scholar 

  13. R.S. Sutton, A.G. Barto: Reinforcement Learning (MIT, Cambridge 1998)

    MATH  Google Scholar 

  14. D. Nguyen-Tuong, J. Peters: Model learning with local Gaussian process regression, Adv. Robotics 23(15), 2015–2034 (2009)

    Article  Google Scholar 

  15. J. Nakanishi, R. Cory, M. Mistry, J. Peters, S. Schaal: Operational space control: A theoretical and emprical comparison, Int. J. Robotics Res. 27(6), 737–757 (2008)

    Article  Google Scholar 

  16. F.R. Reinhart, J.J. Steil: Attractor-based computation with reservoirs for online learning of inverse kinematics, Proc. Eur. Symp. Artif. Neural Netw. (2009)

    Google Scholar 

  17. J. Ting, M. Kalakrishnan, S. Vijayakumar, S. Schaal: Bayesian kernel shaping for learning control, Adv. Neural Inform. Process. Syst., Vol. 21 (2008) pp. 1673–1680

    Google Scholar 

  18. J. Steffen, S. Klanke, S. Vijayakumar, H.J. Ritter: Realising dextrous manipulation with structured manifolds using unsupervised kernel regression with structural hints, ICRA 2009 Workshop: Approaches Sens. Learn. Humanoid Robots, Kobe (2009)

    Google Scholar 

  19. S. Klanke, D. Lebedev, R. Haschke, J.J. Steil, H. Ritter: Dynamic path planning for a 7-dof robot arm, Proc. 2009 IEEE Int. Conf. Intell. Robots Syst. (2006)

    Google Scholar 

  20. A. Angelova, L. Matthies, D. Helmick, P. Perona: Slip prediction using visual information, Proc. Robotics Sci. Syst., Philadelphia (2006)

    Google Scholar 

  21. M. Kalakrishnan, J. Buchli, P. Pastor, S. Schaal: Learning locomotion over rough terrain using terrain templates, IEEE Int. Conf. Intell. Robots Syst. (2009)

    Google Scholar 

  22. N. Hawes, J.L. Wyatt, M. Sridharan, M. Kopicki, S. Hongeng, I. Calvert, A. Sloman, G.-J. Kruijff, H. Jacobsson, M. Brenner, D. Skočaj, A. Vrečko, N. Majer, M. Zillich: The playmate system, Cognit. Syst. 8, 367–393 (2010)

    Article  Google Scholar 

  23. D. Skočaj, M. Kristan, A. Vrečko, A. Leonardis, M. Fritz, M. Stark, B. Schiele, S. Hongeng, J.L. Wyatt: Multi-modal learning, Cogn. Syst. 8, 265–309 (2010)

    Article  Google Scholar 

  24. O.J. Smith: A controller to overcome dead-time, Instrum. Soc. Am. J. 6, 28–33 (1959)

    Google Scholar 

  25. K.S. Narendra, A.M. Annaswamy: Stable Adaptive Systems (Prentice Hall, New Jersey 1989)

    MATH  Google Scholar 

  26. S. Nicosia, P. Tomei: Model reference adaptive control algorithms for industrial robots, Automatica 20, 635–644 (1984)

    Article  MATH  Google Scholar 

  27. J.M. Maciejowski: Predictive Control with Constraints (Prentice Hall, New Jersey 2002)

    MATH  Google Scholar 

  28. R.S. Sutton: Dyna, an integrated architecture for learning, planning, and reacting, SIGART Bulletin 2(4), 160–163 (1991)

    Article  Google Scholar 

  29. C.G. Atkeson, J. Morimoto: Nonparametric representation of policies and value functions: A trajectory-based approach, Adv. Neural Inform. Process. Syst., Vol. 15 (2002)

    Google Scholar 

  30. A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, E. Liang: Autonomous inverted helicopter flight via reinforcement learning, Proc. 11th Int. Symp. Exp. Robotics (2004)

    Google Scholar 

  31. C.E. Rasmussen, M. Kuss: Gaussian processes in reinforcement learning, Adv. Neural Inform. Process. Syst., Vol. 16 (2003) pp. 751–758

    Google Scholar 

  32. A. Rottmann, W. Burgard: Adaptive autonomous control using online value iteration with Gaussian processes, Proc. IEEE Int. Conf. Robotics Autom. (2009)

    Google Scholar 

  33. J.-J.E. Slotine, W. Li: Applied Nonlinear Control (Prentice Hall, Upper Saddle River 1991)

    MATH  Google Scholar 

  34. A. De Luca, P. Lucibello: A general algorithm for dynamic feedback linearization of robots with elastic joints, Proc. IEEE Int. Conf. Robotics Autom. (1998)

    Google Scholar 

  35. I. Jordan, D. Rumelhart: Forward models: Supervised learning with a distal teacher, Cognit. Sci. 16, 307–354 (1992)

    Article  Google Scholar 

  36. D.M. Wolpert, M. Kawato: Multiple paired forward and inverse models for motor control, Neural Netw. 11, 1317–1329 (1998)

    Article  Google Scholar 

  37. M. Kawato: Internal models for motor control and trajectory planning, Curr. Opin. Neurobiol. 9(6), 718–727 (1999)

    Article  Google Scholar 

  38. D.M. Wolpert, R.C. Miall, M. Kawato: Internal models in the cerebellum, Trends Cogn. Sci. 2(9), 338–347 (1998)

    Article  Google Scholar 

  39. N. Bhushan, R. Shadmehr: Evidence for a forward dynamics model in human adaptive motor control, Adv. Neural Inform. Process. Syst., Vol. 11 (1999) pp. 3–9

    Google Scholar 

  40. K. Narendra, J. Balakrishnan, M. Ciliz: Adaptation and learning using multiple models, switching and tuning, IEEE Control Syst, Mag. 15(3), 37–51 (1995)

    Google Scholar 

  41. K. Narendra, J. Balakrishnan: Adaptive control using multiple models, IEEE Trans. Autom. Control 42(2), 171–187 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Haruno, D.M. Wolpert, M. Kawato: Mosaic model for sensorimotor learning and control, Neural Comput. 13(10), 2201–2220 (2001)

    Article  MATH  Google Scholar 

  43. J. Peters, S. Schaal: Learning to control in operational space, Int. J. Robotics Res. 27(2), 197–212 (2008)

    Article  Google Scholar 

  44. H. Akaike: Autoregressive model fitting for control, Ann. Inst. Stat. Math. 23, 163–180 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  45. R.M.C. De Keyser, A.R.V. Cauwenberghe: A self-tuning multistep predictor application, Automatica 17, 167–174 (1980)

    Article  Google Scholar 

  46. S.S. Billings, S. Chen, G. Korenberg: Identification of mimo nonlinear systems using a forward-regression orthogonal estimator, Int. J. Control 49, 2157–2189 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. E. Mosca, G. Zappa, J.M. Lemos: Robustness of multipredictor adaptive regulators: MUSMAR, Automatica 25, 521–529 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Kocijan, R. Murray-Smith, C. Rasmussen, A. Girard: Gaussian process model based predictive control, Proc. Am. Control Conf. (2004)

    Google Scholar 

  49. A. Girard, C.E. Rasmussen, J.Q. Candela, R.M. Smith: Gaussian process priors with uncertain inputs application to multiple-step ahead time series forecasting, Adv. Neural Inform. Process. Syst., Vol. 15 (2002) pp. 545–552

    Google Scholar 

  50. C.G. Atkeson, A. Moore, S. Stefan: Locally weighted learning for control, AI Review 11, 75–113 (1997)

    Google Scholar 

  51. L. Ljung: System Identification – Theory for the User (Prentice-Hall, New Jersey 2004)

    MATH  Google Scholar 

  52. S. Haykin: Neural Networks: A Comprehensive Foundation (Prentice Hall, New Jersey 1999)

    MATH  Google Scholar 

  53. J.J. Steil: Backpropagation-decorrelation: Online recurrent learning with O(N) complexity, Proc. Int. Jt. Conf. Neural Netw. (2004)

    Google Scholar 

  54. C.E. Rasmussen, C.K. Williams: Gaussian Processes for Machine Learning (MIT, Cambridge 2006)

    MATH  Google Scholar 

  55. B. Schölkopf, A. Smola: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond (MIT, Cambridge 2002)

    Google Scholar 

  56. K.J. Aström, B. Wittenmark: Adaptive Control (Addison Wesley, Boston 1995)

    MATH  Google Scholar 

  57. F.J. Coito, J.M. Lemos: A long-range adaptive controller for robot manipulators, Int. J. Robotics Res. 10, 684–707 (1991)

    Article  Google Scholar 

  58. P. Vempaty, K. Cheok, R. Loh: Model reference adaptive control for actuators of a biped robot locomotion, Proc. World Congr. Eng. Comput. Sci. (2009)

    Google Scholar 

  59. J.R. Layne, K.M. Passino: Fuzzy model reference learning control, J. Intell. Fuzzy Syst. 4, 33–47 (1996)

    Article  Google Scholar 

  60. J. Nakanishi, J.A. Farrell, S. Schaal: Composite adaptive control with locally weighted statistical learning, Neural Netw. 18(1), 71–90 (2005)

    Article  MATH  Google Scholar 

  61. J.J. Craig: Introduction to Robotics: Mechanics and Control (Prentice Hall, Upper Saddle River 2004)

    Google Scholar 

  62. M.W. Spong, S. Hutchinson, M. Vidyasagar: Robot Dynamics and Control (Wiley, New York 2006)

    Google Scholar 

  63. S. Schaal, C.G. Atkeson, S. Vijayakumar: Scalable techniques from nonparametric statistics for real-time robot learning, Appl. Intell. 17(1), 49–60 (2002)

    Article  MATH  Google Scholar 

  64. H. Cao, Y. Yin, D. Du, L. Lin, W. Gu, Z. Yang: Neural network inverse dynamic online learning control on physical exoskeleton, 13th Int. Conf. Neural Inform. Process. (2006)

    Google Scholar 

  65. C.G. Atkeson, C.H. An, J.M. Hollerbach: Estimation of inertial parameters of manipulator loads and links, Int. J. Robotics Res. 5(3), 101–119 (1986)

    Article  Google Scholar 

  66. E. Burdet, B. Sprenger, A. Codourey: Experiments in nonlinear adaptive control, Int. Conf. Robotics Autom. 1, 537–542 (1997)

    Article  Google Scholar 

  67. E. Burdet, A. Codourey: Evaluation of parametric and nonparametric nonlinear adaptive controllers, Robotica 16(1), 59–73 (1998)

    Article  Google Scholar 

  68. K.S. Narendra, A.M. Annaswamy: Persistent excitation in adaptive systems, Int. J. Control 45, 127–160 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  69. H.D. Patino, R. Carelli, B.R. Kuchen: Neural networks for advanced control of robot manipulators, IEEE Trans. Neural Netw. 13(2), 343–354 (2002)

    Article  Google Scholar 

  70. D. Nguyen-Tuong, J. Peters: Incremental sparsification for real-time online model learning, Neurocomputing 74(11), 1859–1867 (2011)

    Article  Google Scholar 

  71. D. Nguyen-Tuong, J. Peters: Using model knowledge for learning inverse dynamics, Proc. IEEE Int. Conf. Robotics Autom. (2010)

    Google Scholar 

  72. S.S. Ge, T.H. Lee, E.G. Tan: Adaptive neural network control of flexible joint robots based on feedback linearization, Int. J. Syst. Sci. 29(6), 623–635 (1998)

    Article  Google Scholar 

  73. C.M. Chow, A.G. Kuznetsov, D.W. Clarke: Successive one-step-ahead predictions in multiple model predictive control, Int. J. Control 29, 971–979 (1998)

    MATH  Google Scholar 

  74. M. Kawato: Feedback error learning neural network for supervised motor learning. In: Advanced Neural Computers, ed. by R. Eckmiller (Elsevier, North-Holland, Amsterdam 1990) pp. 365–372

    Google Scholar 

  75. J. Nakanishi, S. Schaal: Feedback error learning and nonlinear adaptive control, Neural Netw. 17(10), 1453–1465 (2004)

    Article  MATH  Google Scholar 

  76. T. Shibata, C. Schaal: Biomimetic gaze stabilization based on feedback-error learning with nonparametric regression networks, Neural Netw. 14(2), 201–216 (2001)

    Article  Google Scholar 

  77. H. Miyamoto, M. Kawato, T. Setoyama, R. Suzuki: Feedback-error-learning neural network for trajectory control of a robotic manipulator, Neural Netw. 1(3), 251–265 (1988)

    Article  Google Scholar 

  78. H. Gomi, M. Kawato: Recognition of manipulated objects by motor learning with modular architecture networks, Neural Netw. 6(4), 485–497 (1993)

    Article  Google Scholar 

  79. A. D'Souza, S. Vijayakumar, S. Schaal: Learning inverse kinematics, IEEE Int. Conf. Intell. Robots Syst. (2001)

    Google Scholar 

  80. S. Vijayakumar, S. Schaal: Locally weighted projection regression: An O(N) algorithm for incremental real time learning in high dimensional space, Proc. 16th Int. Conf. Mach. Learn. (2000)

    Google Scholar 

  81. M. Toussaint, S. Vijayakumar: Learning discontinuities with products-of-sigmoids for switching between local models, Proc. 22nd Int. Conf. Mach. Learn. (2005)

    Google Scholar 

  82. J. Tenenbaum, V. de Silva, J. Langford: A global geometric framework for nonlinear dimensionality reduction, Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  83. S. Roweis, L. Saul: Nonlinear dimensionality reduction by locally linear embedding, Science 290, 2323 (2000)

    Article  Google Scholar 

  84. H. Hoffman, S. Schaal, S. Vijayakumar: Local dimensionality reduction for non-parametric regression, Neural Process. Lett. 29(2), 109–131 (2009)

    Article  Google Scholar 

  85. S. Thrun, T. Mitchell: Lifelong robot learning, Robotics Auton. Syst. 15, 25–46 (1995)

    Article  Google Scholar 

  86. Y. Engel, S. Mannor, R. Meir: Sparse online greedy support vector regression, Eur. Conf. Mach. Learn. (2002)

    Google Scholar 

  87. A.J. Smola, B. Schölkopf: A tutorial on support vector regression, Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  88. C.E. Rasmussen: Evaluation of Gaussian Processes and Other Methods for Non-Linear Regression (University of Toronto, Toronto 1996)

    Google Scholar 

  89. L. Bottou, O. Chapelle, D. DeCoste, J. Weston: Large-Scale Kernel Machines (MIT, Cambridge 2007)

    Book  Google Scholar 

  90. J.Q. Candela, C.E. Rasmussen: A unifying view of sparse approximate Gaussian process regression, J. Mach. Learn. Res. 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  91. R. Genov, S. Chakrabartty, G. Cauwenberghs: Silicon support vector machine with online learning, Int. J. Pattern Recognit. Articial Intell. 17, 385–404 (2003)

    Article  Google Scholar 

  92. S. Vijayakumar, A. D'Souza, S. Schaal: Incremental online learning in high dimensions, Neural Comput. 12(11), 2602–2634 (2005)

    Article  MathSciNet  Google Scholar 

  93. B. Schölkopf, P. Simard, A. Smola, V. Vapnik: Prior knowledge in support vector kernel, Adv. Neural Inform. Process. Syst., Vol. 10 (1998) pp. 640–646

    Google Scholar 

  94. E. Krupka, N. Tishby: Incorporating prior knowledge on features into learning, Int. Conf. Artif. Intell. Stat. (San Juan, Puerto Rico 2007)

    Google Scholar 

  95. A. Smola, T. Friess, B. Schoelkopf: Semiparametric support vector and linear programming machines, Adv. Neural Inform. Process. Syst., Vol. 11 (1999) pp. 585–591

    Google Scholar 

  96. B.J. Kröse, N. Vlassis, R. Bunschoten, Y. Motomura: A probabilistic model for appearance-based robot localization, Image Vis. Comput. 19, 381–391 (2001)

    Article  Google Scholar 

  97. M.K. Titsias, N.D. Lawrence: Bayesian Gaussian process latent variable model, Proc. 13th Int. Conf. Artif. Intell. Stat. (2010)

    Google Scholar 

  98. R. Jacobs, M. Jordan, S. Nowlan, G.E. Hinton: Adaptive mixtures of local experts, Neural Comput. 3, 79–87 (1991)

    Article  Google Scholar 

  99. S. Calinon, F. D'halluin, E. Sauser, D. Caldwell, A. Billard: A probabilistic approach based on dynamical systems to learn and reproduce gestures by imitation, IEEE Robotics Autom. Mag. 17, 44–54 (2010)

    Article  Google Scholar 

  100. V. Treps: A bayesian committee machine, Neural Comput. 12(11), 2719–2741 (2000)

    Article  Google Scholar 

  101. L. Csato, M. Opper: Sparse online Gaussian processes, Neural Comput. 14(3), 641–668 (2002)

    Article  MATH  Google Scholar 

  102. D.H. Grollman, O.C. Jenkins: Sparse incremental learning for interactive robot control policy estimation, IEEE Int. Conf. Robotics Autom., Pasadena (2008)

    Google Scholar 

  103. M. Seeger: Gaussian processes for machine learning, Int. J. Neural Syst. 14(2), 69–106 (2004)

    Article  Google Scholar 

  104. C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, W. Burgard: Learning predictive terrain models for legged robot locomotion, Proc. IEEE Int. Conf. Intell. Robots Syst. (2008)

    Google Scholar 

  105. J. Ko, D. Fox: GP-bayesfilters: Bayesian filtering using Gaussian process prediction and observation models, Auton. Robots 27(1), 75–90 (2009)

    Article  Google Scholar 

  106. J.P. Ferreira, M. Crisostomo, A.P. Coimbra, B. Ribeiro: Simulation control of a biped robot with support vector regression, IEEE Int. Symp. Intell. Signal Process. (2007)

    Google Scholar 

  107. R. Pelossof, A. Miller, P. Allen, T. Jebara: An SVM learning approach to robotic grasping, IEEE Int. Conf. Robotics Autom. (2004)

    Google Scholar 

  108. J. Ma, J. Theiler, S. Perkins: Accurate on-line support vector regression, Neural Comput. 15, 2683–2703 (2005)

    Article  MATH  Google Scholar 

  109. Y. Choi, S.Y. Cheong, N. Schweighofer: Local online support vector regression for learning control, Proc. IEEE Int. Symp. Comput. Intell. Robotics Autom. (2007)

    Google Scholar 

  110. J.-A. Ting, A. D'Souza, S. Schaal: Bayesian robot system identification with input and output noise, Neural Netw. 24(1), 99–108 (2011)

    Article  MATH  Google Scholar 

  111. S. Nowlan, G.E. Hinton: Evaluation of adaptive mixtures of competing experts, Adv. Neural Inform. Process. Syst., Vol. 3 (1991) pp. 774–780

    Google Scholar 

  112. V. Treps: Mixtures of Gaussian processes, Adv. Neural Inform. Process. Syst., Vol. 13 (2001) pp. 654–660

    Google Scholar 

  113. C.E. Rasmussen, Z. Ghahramani: Infinite mixtures of Gaussian process experts, Adv. Neural Inform. Process. Syst., Vol. 14 (2002) pp. 881–888

    Google Scholar 

  114. T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  115. W.K. Haerdle, M. Mueller, S. Sperlich, A. Werwatz: Nonparametric and Semiparametric Models (Springer, New York 2004)

    Book  Google Scholar 

  116. D.J. MacKay: A practical Bayesian framework for back-propagation networks, Computation 4(3), 448–472 (1992)

    Google Scholar 

  117. R.M. Neal: Bayesian Learning for Neural Networks, Lecture Notes in Statistics, Vol. 118 (Springer, New York 1996)

    Book  MATH  Google Scholar 

  118. B. Schölkopf, A.J. Smola, R. Williamson, P.L. Bartlett: New support vector algorithms, Neural Comput. 12(5), 1207–1245 (2000)

    Article  Google Scholar 

  119. C. Plagemann, K. Kersting, P. Pfaff, W. Burgard: Heteroscedastic Gaussian process regression for modeling range sensors in mobile robotics, Snowbird Learn. Workshop (2007)

    Google Scholar 

  120. W.S. Cleveland, C.L. Loader: Smoothing by local regression: Principles and methods. In: Statistical Theory and Computational Aspects of Smoothing, ed. by W. Härdle, M.G. Schimele (Physica, Heidelberg 1996)

    Google Scholar 

  121. J. Fan, I. Gijbels: Local Polynomial Modelling and Its Applications (Chapman Hall, New York 1996)

    MATH  Google Scholar 

  122. J. Fan, I. Gijbels: Data driven bandwidth selection in local polynomial fitting, J. R. Stat. Soc. 57(2), 371–394 (1995)

    MATH  Google Scholar 

  123. A. Moore, M.S. Lee: Efficient algorithms for minimizing cross validation error, Proc. 11th Int. Conf. Mach. Learn. (1994)

    Google Scholar 

  124. A. Moore: Fast, robust adaptive control by learning only forward models, Adv. Neural Inform. Process. Syst., Vol. 4 (1992) pp. 571–578

    Google Scholar 

  125. C.G. Atkeson, A.W. Moore, S. Schaal: Locally weighted learning for control, Artif. Intell. Rev. 11, 75–113 (1997)

    Article  Google Scholar 

  126. G. Tevatia, S. Schaal: Efficient Inverse Kinematics Algorithms for High-Dimensional Movement Systems (University of Southern California, Los Angeles 2008)

    Google Scholar 

  127. C.G. Atkeson, A.W. Moore, S. Schaal: Locally weighted learning, Artif. Intell. Rev. 11(1–5), 11–73 (1997)

    Article  Google Scholar 

  128. N.U. Edakunni, S. Schaal, S. Vijayakumar: Kernel carpentry for online regression using randomly varying coefficient model, Proc. 20th Int. Jt. Conf. Artif. Intell. (2007)

    Google Scholar 

  129. D.H. Jacobson, D.Q. Mayne: Differential Dynamic Programming (American Elsevier, New York 1973)

    MATH  Google Scholar 

  130. C.G. Atkeson, S. Schaal: Robot learning from demonstration, Proc. 14th Int. Conf. Mach. Learn. (1997)

    Google Scholar 

  131. J. Morimoto, G. Zeglin, C.G. Atkeson: Minimax differential dynamic programming: Application to a biped walking robot, Proc. 2009 IEEE Int. Conf. Intell. Robots Syst. (2003)

    Google Scholar 

  132. P. Abbeel, A. Coates, M. Quigley, A.Y. Ng: An application of reinforcement learning to aerobatic helicopter flight, Adv. Neural Inform. Process. Syst., Vol. 19 (2007) pp. 1–8

    Google Scholar 

  133. P.W. Glynn: Likelihood ratio gradient estimation: An overview, Proc. Winter Simul. Conf. (1987)

    Google Scholar 

  134. A.Y. Ng, M. Jordan: Pegasus: A policy search method for large MDPs and POMDPs, Proc. 16th Conf. Uncertain. Artif. Intell. (2000)

    Google Scholar 

  135. B.M. Akesson, H.T. Toivonen: A neural network model predictive controller, J. Process Control 16(9), 937–946 (2006)

    Article  Google Scholar 

  136. D. Gu, H. Hu: Predictive control for a car-like mobile robot, Robotics Auton. Syst. 39, 73–86 (2002)

    Article  Google Scholar 

  137. E.A. Wan, A.A. Bogdanov: Model predictive neural control with applications to a 6 DOF helicopter model, Proc. Am. Control Conf. (2001)

    Google Scholar 

  138. O. Khatib: A unified approach for motion and force control of robot manipulators: The operational space formulation, J. Robotics Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  139. J. Peters, M. Mistry, F.E. Udwadia, J. Nakanishi, S. Schaal: A unifying methodology for robot control with redundant dofs, Auton. Robots 24(1), 1–12 (2008)

    Article  Google Scholar 

  140. C. Salaun, V. Padois, O. Sigaud: Control of redundant robots using learned models: An operational space control approach, Proc. IEEE Int. Conf. Intell. Robots Syst. (2009)

    Google Scholar 

  141. F.R. Reinhart, J.J. Steil: Recurrent neural associative learning of forward and inverse kinematics for movement generation of the redundant PA-10 robot, Symp. Learn. Adapt. Behav. Robotics Syst. (2008)

    Google Scholar 

  142. J.Q. Candela, C.E. Rasmussen, C.K. Williams: Large Scale Kernel Machines (MIT, Cambridge 2007)

    Google Scholar 

  143. S. Ben-David, R. Schuller: Exploiting task relatedness for multiple task learning, Proc. Conf. Learn. Theory (2003)

    Google Scholar 

  144. I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun: Large margin methods for structured and interdependent output variables, J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  145. O. Chapelle, B. Schölkopf, A. Zien: Semi-Supervised Learning (MIT, Cambridge 2006)

    Book  Google Scholar 

  146. J.D. Lafferty, A. McCallum, F.C.N. Pereira: Conditional random fields: Probabilistic models for segmenting and labeling sequence data, Proc. 18th Int. Conf. Mach. Learn. (2001)

    Google Scholar 

  147. K. Muelling, J. Kober, O. Kroemer, J. Peters: Learning to select and generalize striking movements in robot table tennis, Int. J. Robotics Res. 32(3), 263–279 (2012)

    Article  Google Scholar 

  148. S. Mahadevan, J. Connell: Automatic programming of behavior-based robots using reinforcement learning, Artif. Intell. 55(2/3), 311–365 (1992)

    Article  Google Scholar 

  149. V. Gullapalli, J.A. Franklin, H. Benbrahim: Acquiring robot skills via reinforcement learning, IEEE Control Syst. Mag. 14(1), 13–24 (1994)

    Article  Google Scholar 

  150. J.A. Bagnell, J.C. Schneider: Autonomous helicopter control using reinforcement learning policy search methods, IEEE Int. Conf. Robotics Autom. (2001)

    Google Scholar 

  151. S. Schaal: Learning from demonstration, Adv. Neural Inform. Process. Syst., Vol. 9 (1996) pp. 1040–1046

    Google Scholar 

  152. W. B. Powell: AI, OR and Control Theory: A Rosetta Stone for Stochastic Optimization, Tech. Rep. (Princeton University, Princeton 2012)

    Google Scholar 

  153. C.G. Atkeson: Nonparametric model-based reinforcement learning, Adv. Neural Inform. Process. Syst., Vol. 10 (1998) pp. 1008–1014

    Google Scholar 

  154. A. Coates, P. Abbeel, A.Y. Ng: Apprenticeship learning for helicopter control, Communication ACM 52(7), 97–105 (2009)

    Article  Google Scholar 

  155. R.S. Sutton, A.G. Barto, R.J. Williams: Reinforcement learning is direct adaptive optimal control, Am. Control Conf. (1991)

    Google Scholar 

  156. A.D. Laud: Theory and Application of Reward Shaping in Reinforcement Learning (University of Illinois, Urbana-Champaign 2004)

    Google Scholar 

  157. M.P. Deisenrot, C.E. Rasmussen: PILCO: A model-based and data-efficient approach to policy search, 28th Int. Conf. Mach. Learn. (2011)

    Google Scholar 

  158. H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu, E. Nakano, Y. Wada, M. Kawato: A Kendama learning robot based on bidirectional theory, Neural Netw. 9(8), 1281–1302 (1996)

    Article  Google Scholar 

  159. N. Kohl, P. Stone: Policy gradient reinforcement learning for fast quadrupedal locomotion, IEEE Int. Conf. Robotics Autom. (2004)

    Google Scholar 

  160. R. Tedrake, T.W. Zhang, H.S. Seung: Learning to walk in 20 minutes, Yale Workshop Adapt. Learn. Syst. (2005)

    Google Scholar 

  161. J. Peters, S. Schaal: Reinforcement learning of motor skills with policy gradients, Neural Netw. 21(4), 682–697 (2008)

    Article  Google Scholar 

  162. J. Peters, S. Schaal: Natural actor-critic, Neurocomputing 71(7–9), 1180–1190 (2008)

    Article  Google Scholar 

  163. J. Kober, J. Peters: Policy search for motor primitives in robotics, Adv. Neural Inform. Process. Syst., Vol. 21 (2009) pp. 849–856

    Google Scholar 

  164. M.P. Deisenroth, C.E. Rasmussen, D. Fox: Learning to control a low-cost manipulator using data-efficient reinforcement learning. In: Robotics: Science and Systems VII, ed. by H. Durrand-Whyte, N. Roy, P. Abbeel (MIT, Cambridge 2011)

    Google Scholar 

  165. L.P. Kaelbling, M.L. Littman, A.W. Moore: Reinforcement learning: A survey, J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  166. M.E. Lewis, M.L. Puterman: The Handbook of Markov Decision Processes: Methods and Applications (Kluwer, Dordrecht 2001) pp. 89–111

    Google Scholar 

  167. J. Peters, S. Vijayakumar, S. Schaal: Linear Quadratic Regulation as Benchmark for Policy Gradient Methods, Technical Report (University of Southern California, Los Angeles 2004)

    Google Scholar 

  168. R.E. Bellman: Dynamic Programming (Princeton Univ. Press, Princeton 1957)

    MATH  Google Scholar 

  169. R.S. Sutton, D. McAllester, S.P. Singh, Y. Mansour: Policy gradient methods for reinforcement learning with function approximation, Adv. Neural Inform. Process. Syst., Vol. 12 (1999) pp. 1057–1063

    Google Scholar 

  170. T. Jaakkola, M.I. Jordan, S.P. Singh: Convergence of stochastic iterative dynamic programming algorithms, Adv. Neural Inform. Process. Syst., Vol. 6 (1993) pp. 703–710

    Google Scholar 

  171. J. Rust: Using randomization to break the curse of dimensionality, Econometrica 65(3), 487–516 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  172. D.E. Kirk: Optimal Control Theory (Prentice-Hall, Englewood Cliffs 1970)

    Google Scholar 

  173. A. Schwartz: A reinforcement learning method for maximizing undiscounted rewards, Int. Conf. Mach. Learn. (1993)

    Google Scholar 

  174. C.G. Atkeson, S. Schaal: Robot learning from demonstration, Int. Conf. Mach. Learn. (1997)

    Google Scholar 

  175. J. Peters, K. Muelling, Y. Altun: Relative entropy policy search, Natl. Conf. Artif. Intell. (2010)

    Google Scholar 

  176. G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, G. Cheng: Learning CPG-based biped locomotion with a policy gradient method: Application to a humanoid robot, Int. J. Robotics Res. 27(2), 213–228 (2008)

    Article  Google Scholar 

  177. F. Guenter, M. Hersch, S. Calinon, A. Billard: Reinforcement learning for imitating constrained reaching movements, Adv. Robotics 21(13), 1521–1544 (2007)

    Article  Google Scholar 

  178. J.Z. Kolter, A.Y. Ng: Policy search via the signed derivative, Robotics Sci. Syst. V, Seattle (2009)

    Google Scholar 

  179. A.Y. Ng, H.J. Kim, M.I. Jordan, S. Sastry: Autonomous helicopter flight via reinforcement learning, Adv. Neural Inform. Process. Syst., Vol. 16 (2004) pp. 799–806

    Google Scholar 

  180. J.W. Roberts, L. Moret, J. Zhang, R. Tedrake: From motor to interaction learning in robots, Stud. Comput. Intell. 264, 293–309 (2010)

    Article  MATH  Google Scholar 

  181. R. Tedrake: Stochastic policy gradient reinforcement learning on a simple 3D biped, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2004)

    Google Scholar 

  182. F. Stulp, E. Theodorou, M. Kalakrishnan, P. Pastor, L. Righetti, S. Schaal: Learning motion primitive goals for robust manipulation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011)

    Google Scholar 

  183. M. Strens, A. Moore: Direct policy search using paired statistical tests, Int. Conf. Mach. Learn. (2001)

    Google Scholar 

  184. A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, E. Liang: Autonomous inverted helicopter flight via reinforcement learning, Int. Symp. Exp. Robotics (2004)

    Google Scholar 

  185. T. Geng, B. Porr, F. Wörgötter: Fast biped walking with a reflexive controller and real-time policy searching, Adv. Neural Inform. Process. Syst., Vol. 18 (2006) pp. 427–434

    Google Scholar 

  186. N. Mitsunaga, C. Smith, T. Kanda, H. Ishiguro, N. Hagita: Robot behavior adaptation for human-robot interaction based on policy gradient reinforcement learning, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2005)

    Google Scholar 

  187. M. Sato, Y. Nakamura, S. Ishii: Reinforcement learning for biped locomotion, Int. Conf. Artif. Neural Netw. (2002)

    Google Scholar 

  188. R.Y. Rubinstein, D.P. Kroese: The Cross Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation (Springer, New York 2004)

    Book  MATH  Google Scholar 

  189. D.E. Goldberg: Genetic Algorithms (Addision Wesley, New York 1989)

    MATH  Google Scholar 

  190. J.T. Betts: Practical Methods for Optimal Control Using Nonlinear Programming, Adv. Design Control, Vol. 3 (SIAM, Philadelphia 2001)

    MATH  Google Scholar 

  191. R.J. Williams: Simple statistical gradient-following algorithms for connectionist reinforcement learning, Mach. Learn. 8, 229–256 (1992)

    MATH  Google Scholar 

  192. P. Dayan, G.E. Hinton: Using expectation-maximization for reinforcement learning, Neural Comput. 9(2), 271–278 (1997)

    Article  MATH  Google Scholar 

  193. N. Vlassis, M. Toussaint, G. Kontes, S. Piperidis: Learning model-free robot control by a Monte Carlo EM algorithm, Auton. Robots 27(2), 123–130 (2009)

    Article  Google Scholar 

  194. J. Kober, E. Oztop, J. Peters: Reinforcement learning to adjust robot movements to new situations, Proc. Robotics Sci. Syst. Conf. (2010)

    Google Scholar 

  195. E.A. Theodorou, J. Buchli, S. Schaal: Reinforcement learning of motor skills in high dimensions: A path integral approach, IEEE Int. Conf. Robotics Autom. (2010)

    Google Scholar 

  196. J.A. Bagnell, A.Y. Ng, S. Kakade, J. Schneider: Policy search by dynamic programming, Adv. Neural Inform. Process. Syst., Vol. 16 (2003) pp. 831–838

    Google Scholar 

  197. T. Kollar, N. Roy: Trajectory optimization using reinforcement learning for map exploration, Int. J. Robotics Res. 27(2), 175–197 (2008)

    Article  Google Scholar 

  198. D. Lizotte, T. Wang, M. Bowling, D. Schuurmans: Automatic gait optimization with Gaussian process regression, Int. Jt. Conf. Artif. Intell. (2007)

    Google Scholar 

  199. S. Kuindersma, R. Grupen, A.G. Barto: Learning dynamic arm motions for postural recovery, IEEE-RAS Int. Conf. Humanoid Robots (2011)

    Google Scholar 

  200. M. Tesch, J.G. Schneider, H. Choset: Using response surfaces and expected improvement to optimize snake robot gait parameters, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011)

    Google Scholar 

  201. S.-J. Yi, B.-T. Zhang, D. Hong, D.D. Lee: Learning full body push recovery control for small humanoid robots, IEEE Proc. Int. Conf. Robotics Autom. (2011)

    Google Scholar 

  202. J.A. Boyan, A.W. Moore: Generalization in reinforcement learning: Safely approximating the value function, Adv. Neural Inform. Process. Syst., Vol. 7 (1995) pp. 369–376

    Google Scholar 

  203. S. Kakade, J. Langford: Approximately optimal approximate reinforcement learning, Int. Conf. Mach. Learn. (2002)

    Google Scholar 

  204. E. Greensmith, P.L. Bartlett, J. Baxter: Variance reduction techniques for gradient estimates in reinforcement learning, J. Mach. Learn. Res. 5, 1471–1530 (2004)

    MathSciNet  MATH  Google Scholar 

  205. M.T. Rosenstein, A.G. Barto: Reinforcement learning with supervision by a stable controller, Am. Control Conf. (2004)

    Google Scholar 

  206. J.N. Tsitsiklis, B. Van Roy: An analysis of temporal-difference learning with function approximation, IEEE Trans. Autom. Control 42(5), 674–690 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  207. J.Z. Kolter, A.Y. Ng: Regularization and feature selection in least-squares temporal difference learning, Int. Conf. Mach. Learn. (2009)

    Google Scholar 

  208. L.C. Baird, H. Klopf: Reinforcement Learning with High-Dimensional Continuous Actions, Technical Report WL-TR-93-1147 (Wright-Patterson Air Force Base, Dayton 1993)

    Book  Google Scholar 

  209. G.D. Konidaris, S. Osentoski, P. Thomas: Value function approximation in reinforcement learning using the Fourier basis, AAAI Conf. Artif. Intell. (2011)

    Google Scholar 

  210. J. Peters, K. Muelling, J. Kober, D. Nguyen-Tuong, O. Kroemer: Towards motor skill learning for robotics, Int. Symp. Robotics Res. (2010)

    Google Scholar 

  211. L. Buşoniu, R. Babuška, B. de Schutter, D. Ernst: Reinforcement Learning and Dynamic Programming Using Function Approximators (CRC, Boca Raton 2010)

    MATH  Google Scholar 

  212. A.G. Barto, S. Mahadevan: Recent advances in hierarchical reinforcement learning, Discret. Event Dyn. Syst. 13(4), 341–379 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  213. S. Hart, R. Grupen: Learning generalizable control programs, IEEE Trans. Auton. Mental Dev. 3(3), 216–231 (2011)

    Article  Google Scholar 

  214. J.G. Schneider: Exploiting model uncertainty estimates for safe dynamic control learning, Adv. Neural Inform. Process. Syst., Vol. 9 (1997) pp. 1047–1053

    Google Scholar 

  215. J.A. Bagnell: Learning Decisions: Robustness, Uncertainty, and Approximation. Dissertation (Robotics Institute, Carnegie Mellon University, Pittsburgh 2004)

    Google Scholar 

  216. T.M. Moldovan, P. Abbeel: Safe exploration in markov decision processes, 29th Int. Conf. Mach. Learn. (2012)

    Google Scholar 

  217. T. Hester, M. Quinlan, P. Stone: RTMBA: A real-time model-based reinforcement learning architecture for robot control, IEEE Int. Conf. Robotics Autom. (2012)

    Google Scholar 

  218. C.G. Atkeson: Using local trajectory optimizers to speed up global optimization in dynamic programming, Adv. Neural Inform. Process. Syst., Vol. 6 (1994) pp. 663–670

    Google Scholar 

  219. J. Kober, J. Peters: Policy search for motor primitives in robotics, Mach. Learn. 84(1/2), 171–203 (2010)

    MathSciNet  MATH  Google Scholar 

  220. S. Russell: Learning agents for uncertain environments (extended abstract), Conf. Comput. Learn. Theory (1989)

    Google Scholar 

  221. P. Abbeel, A.Y. Ng: Apprenticeship learning via inverse reinforcement learning, Int. Conf. Mach. Learn. (2004)

    Google Scholar 

  222. N.D. Ratliff, J.A. Bagnell, M.A. Zinkevich: Maximum margin planning, Int. Conf. Mach. Learn. (2006)

    Google Scholar 

  223. R.L. Keeney, H. Raiffa: Decisions with Multiple Objectives: Preferences and Value Tradeoffs (Wiley, New York 1976)

    MATH  Google Scholar 

  224. N. Ratliff, D. Bradley, J.A. Bagnell, J. Chestnutt: Boosting structured prediction for imitation learning, Adv. Neural Inform. Process. Syst., Vol. 19 (2006) pp. 1153–1160

    Google Scholar 

  225. D. Silver, J.A. Bagnell, A. Stentz: High performance outdoor navigation from overhead data using imitation learning. In: Robotics: Science and Systems, Vol. IV, ed. by O. Brock, J. Trinkle, F. Ramos (MIT, Cambridge 2008)

    Google Scholar 

  226. D. Silver, J.A. Bagnell, A. Stentz: Learning from demonstration for autonomous navigation in complex unstructured terrain, Int. J. Robotics Res. 29(12), 1565–1592 (2010)

    Article  Google Scholar 

  227. N. Ratliff, J.A. Bagnell, S. Srinivasa: Imitation learning for locomotion and manipulation, IEEE-RAS Int. Conf. Humanoid Robots (2007)

    Google Scholar 

  228. J.Z. Kolter, P. Abbeel, A.Y. Ng: Hierarchical apprenticeship learning with application to quadruped locomotion, Adv. Neural Inform. Process. Syst., Vol. 20 (2007) pp. 769–776

    Google Scholar 

  229. J. Sorg, S.P. Singh, R.L. Lewis: Reward design via online gradient ascent, Adv. Neural Inform. Process. Syst., Vol. 23 (2010) pp. 2190–2198

    Google Scholar 

  230. M. Zucker, J.A. Bagnell: Reinforcement planning: RL for optimal planners, IEEE Proc. Int. Conf. Robotics Autom. (2012)

    Google Scholar 

  231. H. Benbrahim, J.S. Doleac, J.A. Franklin, O.G. Selfridge: Real-time learning: A ball on a beam, Int. Jt. Conf. Neural Netw. (1992)

    Google Scholar 

  232. B. Nemec, M. Zorko, L. Zlajpah: Learning of a ball-in-a-cup playing robot, Int. Workshop Robotics, Alpe-Adria-Danube Region (2010)

    Google Scholar 

  233. M. Tokic, W. Ertel, J. Fessler: The crawler, a class room demonstrator for reinforcement learning, Int. Fla. Artif. Intell. Res. Soc. Conf. (2009)

    Google Scholar 

  234. H. Kimura, T. Yamashita, S. Kobayashi: Reinforcement learning of walking behavior for a four-legged robot, IEEE Conf. Decis. Control (2001)

    Google Scholar 

  235. R.A. Willgoss, J. Iqbal: Reinforcement learning of behaviors in mobile robots using noisy infrared sensing, Aust. Conf. Robotics Autom. (1999)

    Google Scholar 

  236. L. Paletta, G. Fritz, F. Kintzler, J. Irran, G. Dorffner: Perception and developmental learning of affordances in autonomous robots, Lect. Notes Comput. Sci. 4667, 235–250 (2007)

    Article  Google Scholar 

  237. C. Kwok, D. Fox: Reinforcement learning for sensing strategies, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2004)

    Google Scholar 

  238. T. Yasuda, K. Ohkura: A reinforcement learning technique with an adaptive action generator for a multi-robot system, Int. Conf. Simul. Adapt. Behav. (2008)

    Google Scholar 

  239. J.H. Piater, S. Jodogne, R. Detry, D. Kraft, N. Krüger, O. Kroemer, J. Peters: Learning visual representations for perception-action systems, Int. J. Robotics Res. 30(3), 294–307 (2011)

    Article  MATH  Google Scholar 

  240. M. Asada, S. Noda, S. Tawaratsumida, K. Hosoda: Purposive behavior acquisition for a real robot by vision-based reinforcement learning, Mach. Learn. 23(2/3), 279–303 (1996)

    Article  Google Scholar 

  241. M. Huber, R.A. Grupen: A feedback control structure for on-line learning tasks, Robotics Auton. Syst. 22(3/4), 303–315 (1997)

    Article  Google Scholar 

  242. P. Fidelman, P. Stone: Learning ball acquisition on a physical robot, Int. Symp. Robotics Autom. (2004)

    Google Scholar 

  243. V. Soni, S.P. Singh: Reinforcement learning of hierarchical skills on the Sony AIBO robot, Int. Conf. Dev. Learn. (2006)

    Google Scholar 

  244. B. Nemec, M. Tamošiunaitė, F. Wörgötter, A. Ude: Task adaptation through exploration and action sequencing, IEEE-RAS Int. Conf. Humanoid Robots (2009)

    Google Scholar 

  245. M.J. Matarić: Reinforcement learning in the multi-robot domain, Auton. Robots 4, 73–83 (1997)

    Article  Google Scholar 

  246. M.J. Matarić: Reward functions for accelerated learning, Int. Conf. Mach. Learn. (ICML) (1994)

    Google Scholar 

  247. R. Platt, R.A. Grupen, A.H. Fagg: Improving grasp skills using schema structured learning, Int. Conf. Dev. Learn. (2006)

    Google Scholar 

  248. M. Dorigo, M. Colombetti: Robot Shaping: Developing Situated Agents Through Learning, Technical Report (International Computer Science Institute, Berkeley 1993)

    Google Scholar 

  249. G.D. Konidaris, S. Kuindersma, R. Grupen, A.G. Barto: Autonomous skill acquisition on a mobile manipulator, AAAI Conf. Artif. Intell. (2011)

    Google Scholar 

  250. G.D. Konidaris, S. Kuindersma, R. Grupen, A.G. Barto: Robot learning from demonstration by constructing skill trees, Int. J. Robotics Res. 31(3), 360–375 (2012)

    Article  Google Scholar 

  251. A. Cocora, K. Kersting, C. Plagemann, W. Burgard, L. de Raedt: Learning relational navigation policies, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2006)

    Google Scholar 

  252. D. Katz, Y. Pyuro, O. Brock: Learning to manipulate articulated objects in unstructured environments using a grounded relational representation. In: Robotics: Science and Systems, Vol. IV, ed. by O. Brock, J. Trinkle, F. Ramos (MIT, Cambridge 2008)

    Google Scholar 

  253. C.H. An, C.G. Atkeson, J.M. Hollerbach: Model-Based Control of a Robot Manipulator (MIT, Press, Cambridge 1988)

    Google Scholar 

  254. C. Gaskett, L. Fletcher, A. Zelinsky: Reinforcement learning for a vision based mobile robot, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2000)

    Google Scholar 

  255. Y. Duan, B. Cui, H. Yang: Robot navigation based on fuzzy RL algorithm, Int. Symp. Neural Netw. (2008)

    Google Scholar 

  256. H. Benbrahim, J.A. Franklin: Biped dynamic walking using reinforcement learning, Robotics Auton. Syst. 22(3/4), 283–302 (1997)

    Article  Google Scholar 

  257. W.D. Smart, L. Pack Kaelbling: A framework for reinforcement learning on real robots, Natl. Conf. Artif. Intell./Innov. Appl. Artif. Intell. (1989)

    Google Scholar 

  258. D.C. Bentivegna: Learning from Observation Using Primitives (Georgia Institute of Technology, Atlanta 2004)

    Google Scholar 

  259. A. Rottmann, C. Plagemann, P. Hilgers, W. Burgard: Autonomous blimp control using model-free reinforcement learning in a continuous state and action space, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2007)

    Google Scholar 

  260. K. Gräve, J. Stückler, S. Behnke: Learning motion skills from expert demonstrations and own experience using Gaussian process regression, Jt. Int. Symp. Robotics (ISR) Ger. Conf. Robotics (ROBOTIK) (2010)

    Google Scholar 

  261. O. Kroemer, R. Detry, J. Piater, J. Peters: Active learning using mean shift optimization for robot grasping, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2009)

    Google Scholar 

  262. O. Kroemer, R. Detry, J. Piater, J. Peters: Combining active learning and reactive control for robot grasping, Robotics Auton. Syst. 58(9), 1105–1116 (2010)

    Article  Google Scholar 

  263. T. Tamei, T. Shibata: Policy gradient learning of cooperative interaction with a robot using user's biological signals, Int. Conf. Neural Inf. Process. (2009)

    Google Scholar 

  264. A.J. Ijspeert, J. Nakanishi, S. Schaal: Learning attractor landscapes for learning motor primitives, Adv. Neural Inform. Process. Syst., Vol. 15 (2003) pp. 1547–1554

    Google Scholar 

  265. S. Schaal, P. Mohajerian, A.J. Ijspeert: Dynamics systems vs. optimal control – A unifying view, Prog. Brain Res. 165(1), 425–445 (2007)

    Article  Google Scholar 

  266. H.-I. Lin, C.-C. Lai: Learning collision-free reaching skill from primitives, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2012)

    Google Scholar 

  267. J. Kober, B. Mohler, J. Peters: Learning perceptual coupling for motor primitives, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2008)

    Google Scholar 

  268. S. Bitzer, M. Howard, S. Vijayakumar: Using dimensionality reduction to exploit constraints in reinforcement learning, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2010)

    Google Scholar 

  269. J. Buchli, F. Stulp, E. Theodorou, S. Schaal: Learning variable impedance control, Int. J. Robotics Res. 30(7), 820–833 (2011)

    Article  Google Scholar 

  270. P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, S. Schaal: Skill learning and task outcome prediction for manipulation, IEEE Int. Conf. Robotics Autom. (2011)

    Google Scholar 

  271. M. Kalakrishnan, L. Righetti, P. Pastor, S. Schaal: Learning force control policies for compliant manipulation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011)

    Google Scholar 

  272. D.C. Bentivegna, C.G. Atkeson, G. Cheng: Learning from observation and practice using behavioral primitives: Marble maze, 11th Int. Symp. Robotics Res. (2004)

    Google Scholar 

  273. F. Kirchner: Q-learning of complex behaviours on a six-legged walking machine, EUROMICRO Workshop Adv. Mobile Robots (1997)

    Google Scholar 

  274. J. Morimoto, K. Doya: Acquisition of stand-up behavior by a real robot using hierarchical reinforcement learning, Robotics Auton. Syst. 36(1), 37–51 (2001)

    Article  MATH  Google Scholar 

  275. J.-Y. Donnart, J.-A. Meyer: Learning reactive and planning rules in a motivationally autonomous animat, Syst. Man Cybern. B 26(3), 381–395 (1996)

    Article  Google Scholar 

  276. C. Daniel, G. Neumann, J. Peters: Learning concurrent motor skills in versatile solution spaces, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2012)

    Google Scholar 

  277. E.C. Whitman, C.G. Atkeson: Control of instantaneously coupled systems applied to humanoid walking, IEEE-RAS Int. Conf. Humanoid Robots (2010)

    Google Scholar 

  278. X. Huang, J. Weng: Novelty and reinforcement learning in the value system of developmental robots, 2nd Int. Workshop Epigenetic Robotics Model. Cognit. Dev. Robotic Syst. (2002)

    Google Scholar 

  279. M. Pendrith: Reinforcement learning in situated agents: Some theoretical problems and practical solutions, Eur. Workshop Learn. Robots (1999)

    Google Scholar 

  280. B. Wang, J.W. Li, H. Liu: A heuristic reinforcement learning for robot approaching objects, IEEE Conf. Robotics Autom. Mechatron. (2006)

    Google Scholar 

  281. L.P. Kaelbling: Learning in Embedded Systems (Stanford University, Stanford 1990)

    Google Scholar 

  282. R.S. Sutton: Integrated architectures for learning, planning, and reacting based on approximating dynamic programming, Int. Conf. Mach. Learn. (1990)

    Google Scholar 

  283. A.W. Moore, C.G. Atkeson: Prioritized sweeping: Reinforcement learning with less data and less time, Mach. Learn. 13(1), 103–130 (1993)

    Google Scholar 

  284. J. Peng, R.J. Williams: Incremental multi-step Q-learning, Mach. Learn. 22(1), 283–290 (1996)

    Google Scholar 

  285. N. Jakobi, P. Husbands, I. Harvey: Noise and the reality gap: The use of simulation in evolutionary robotics, 3rd Eur. Conf. Artif. Life (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Peters or Stefan Schaal .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Inverted helicopter hovering available from http://handbookofrobotics.org/view-chapter/15/videodetails/352

:

Inverse reinforcement available from http://handbookofrobotics.org/view-chapter/15/videodetails/353

:

Machine learning table tennis available from http://handbookofrobotics.org/view-chapter/15/videodetails/354

:

Learning motor primitives available from http://handbookofrobotics.org/view-chapter/15/videodetails/355

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peters, J., Lee, D.D., Kober, J., Nguyen-Tuong, D., Bagnell, J.A., Schaal, S. (2016). Robot Learning. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics