Skip to main content

Redundant Robots

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter focuses on redundancy resolution schemes, i. e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes.

In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled, with a discussion of the main techniques for handling kinematic singularities. Next, different first-order methods to solve kinematic redundancy are arranged in two main categories, namely those based on the optimization of suitable performance criteria and those relying on the augmentation of the task space. Redundancy resolution methods at the acceleration (second-order differential) level are then considered in order to take into account dynamics issues, e. g., torque minimization. Conditions under which a cyclic task motion results in a cyclic joint motion are also discussed; this is a major issue when a redundant manipulator is used to execute a repetitive task, e. g., in industrial applications. The use of kinematic redundancy for fault tolerance is analyzed in detail. Suggestions for further reading are given in a final section.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CLIK:

closed-loop inverse kinematics

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DOF:

degree of freedom

NASA:

National Aeronautics and Space Agency

SCARA:

selective compliance assembly robot arm

SVD:

singular value decomposition

TPBVP:

two-point boundary value problem

References

  1. D.E. Whitney: Resolved motion rate control of manipulators and human prostheses, IEEE Trans. Man-Mach. Syst. 10(2), 47–53 (1969)

    Article  Google Scholar 

  2. G.H. Golub, C. Reinsch: Singular value decomposition and least-squares solutions, Numer. Math. 14, 403–420 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. A.A. Maciejewski, C.A. Klein: The singular value decomposition: computation and applications to robotics, Int. J. Robotics Res. 8(6), 63–79 (1989)

    Article  Google Scholar 

  4. T. Yoshikawa: Manipulability of robotic mechanisms, Int. J. Robotics Res. 4(2), 3–9 (1985)

    Article  Google Scholar 

  5. C.A. Klein, B.E. Blaho: Dexterity measures for the design and control of kinematically redundant manipulators, Int. J. Robotics Res. 6(2), 72–83 (1987)

    Article  Google Scholar 

  6. A.A. Maciejewski, C.A. Klein: Numerical filtering for the operation of robotic manipulators through kinematically singular configurations, J. Robotics Syst. 5, 527–552 (1988)

    Article  Google Scholar 

  7. S. Chiaverini: Estimate of the two smallest singular values of the Jacobian matrix: application to damped least-squares inverse kinematics, J. Robotics Syst. 10, 991–1008 (1993)

    Article  MATH  Google Scholar 

  8. O. Egeland, M. Ebdrup, S. Chiaverini: Sensory control in singular configurations – Application to visual servoing, IEEE Int. Workshop Intell. Motion Control, Istanbul (1990) pp. 401–405

    Google Scholar 

  9. Y. Nakamura, H. Hanafusa: Inverse kinematic solutions with singularity robustness for robot manipulator control, Trans. ASME J. Dyn. Syst. Meas., Control 108, 163–171 (1986)

    MATH  Google Scholar 

  10. D.E. Whitney: The mathematics of coordinated control of prosthetic arms and manipulators, Trans. ASME J. Dyn. Syst. Meas., Control 94, 303–309 (1972)

    Google Scholar 

  11. T.L. Boullion, P.L. Odell: Generalized Inverse Matrices (Wiley, New York 1971)

    MATH  Google Scholar 

  12. C.R. Rao, S.K. Mitra: Generalized Inverse of Matrices and its Applications (Wiley, New York 1971)

    MATH  Google Scholar 

  13. A. Ben-Israel, T.N.E. Greville: Generalized Inverses: Theory and Applications (Wiley, New York 1974)

    MATH  Google Scholar 

  14. R.H. Taylor: Planning and execution of straight-line manipulator trajectories, IBM J. Res. Dev. 23, 424–436 (1979)

    Article  Google Scholar 

  15. M. Sampei, K. Furuta: Robot control in the neighborhood of singular points, IEEE J. Robotics Autom. 4, 303–309 (1988)

    Article  Google Scholar 

  16. E.W. Aboaf, R.P. Paul: Living with the singularity of robot wrists, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1713–1717

    Google Scholar 

  17. S. Chiaverini, O. Egeland: A solution to the singularity problem for six-joint manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 644–649

    Google Scholar 

  18. S. Chiaverini, O. Egeland: An efficient pseudo-inverse solution to the inverse kinematic problem for six-joint manipulators, Model. Identif. Control 11(4), 201–222 (1990)

    Article  MathSciNet  Google Scholar 

  19. O. Khatib: A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE J. Robotics Autom. 3, 43–53 (1987)

    Article  Google Scholar 

  20. C.W. Wampler: Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods, IEEE Trans. Syst. Man Cybern. 16, 93–101 (1986)

    Article  MATH  Google Scholar 

  21. S. Chiaverini, O. Egeland, R.K. Kanestrøm: Achieving user-defined accuracy with damped least-squares inverse kinematics, 5th Int. Conf. Adv. Robotics, Pisa (1991) pp. 672–677

    Google Scholar 

  22. J.R. Sagli: Coordination of Motion in Manipulators with Redundant Degrees of Freedom, Ph.D. Thesis (Norwegian University of Science and Technology, Trondheim 1991)

    Google Scholar 

  23. P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy, Int. J. Robotics Res. 10(4), 410–425 (1991)

    Article  Google Scholar 

  24. B. Siciliano: A closed-loop inverse kinematic scheme for on-line joint-based robot control, Robotica 8, 231–243 (1990)

    Article  Google Scholar 

  25. Z.R. Novaković, B. Siciliano: A new second-order inverse kinematics solution for redundant manipulators. In: Advances in Robot Kinematics, ed. by S. Stifter, J. Lenarčič (Springer, New York 1991) pp. 408–415

    Chapter  Google Scholar 

  26. A. Balestrino, G. De Maria, L. Sciavicco: Robust control of robotic manipulators, 9th IFAC World Cong., Budapest (1984) pp. 80–85

    Google Scholar 

  27. W.A. Wolovich, H. Elliott: A computational technique for inverse kinematics, 23rd IEEE Conf. Decis. Control, Las Vegas (1984) pp. 1359–1363

    Google Scholar 

  28. L. Sciavicco, B. Siciliano: A solution algorithm to the inverse kinematic problem for redundant manipulators, IEEE J. Robotics Autom. 4, 403–410 (1988)

    Article  Google Scholar 

  29. J. Baillieul, J. Hollerbach, R.W. Brockett: Programming and control of kinematically redundant manipulators, 23rd IEEE Conf. Decis. Control, Las Vegas (1984) pp. 768–774

    Google Scholar 

  30. A. Liégeois: Automatic supervisory control of the configuration and behavior of multibody mechanisms, IEEE Trans. Syst. Man Cybern. 7, 868–871 (1977)

    Article  MATH  Google Scholar 

  31. O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, IEEE Int. Conf. Robotics Autom. (ICRA), St. Louis (1985) pp. 500–505

    Google Scholar 

  32. J.C. Latombe: Robot Motion Planning (Kluwer, Boston 1991)

    Book  MATH  Google Scholar 

  33. D.G. Luenberger: Linear and Nonlinear Programming (Addison-Wesley, Reading 1984)

    MATH  Google Scholar 

  34. A. De Luca, G. Oriolo: Issues in acceleration resolution of robot redundancy, 3rd IFAC Symp. Robot Control, Vienna (1991) pp. 665–670

    Google Scholar 

  35. J. Baillieul: Kinematic programming alternatives for redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), St. Louis (1985) pp. 722–728

    Google Scholar 

  36. P.H. Chang: A closed-form solution for inverse kinematics of robot manipulators with redundancy, IEEE J. Robotics Autom. 3, 393–403 (1987)

    Article  Google Scholar 

  37. J. Baillieul: Avoiding obstacles and resolving kinematic redundancy, IEEE Int. Conf. Robotics Autom. (ICRA), San Francisco (1986) pp. 1698–1704

    Google Scholar 

  38. L. Sciavicco, B. Siciliano: Solving the inverse kinematic problem for robotic manipulators, 6th CISM-IFToMM Symp. Theory Pract. Robotics Manip., Kraków (1986) pp. 107–114

    Google Scholar 

  39. L. Sciavicco, B. Siciliano: A dynamic solution to the inverse kinematic problem for redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1081–1087

    Google Scholar 

  40. O. Egeland: Task-space tracking with redundant manipulators, IEEE J. Robotics Autom. 3, 471–475 (1987)

    Article  Google Scholar 

  41. H. Seraji: Configuration control of redundant manipulators: theory and implementation, IEEE J. Robotics Autom. 5, 472–490 (1989)

    Article  Google Scholar 

  42. J. Baillieul: A constraint oriented approach to inverse problems for kinematically redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1827–1833

    Google Scholar 

  43. S.L. Chiu: Control of redundant manipulators for task compatibility, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 1718–1724

    Google Scholar 

  44. H. Seraji, R. Colbaugh: Improved configuration control for redundant robots, J. Robotics Syst. 7, 897–928 (1990)

    Article  MATH  Google Scholar 

  45. O. Egeland, J.R. Sagli, I. Spangelo, S. Chiaverini: A damped least-squares solution to redundancy resolution, IEEE Int. Conf. Robotics Autom. (ICRA), Sacramento (1991) pp. 945–950

    Google Scholar 

  46. A.A. Maciejewski, C.A. Klein: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments, Int. J. Robotics Res. 4(3), 109–117 (1985)

    Article  Google Scholar 

  47. Y. Nakamura, H. Hanafusa, T. Yoshikawa: Task-priority based redundancy control of robot manipulators, Int. J. Robotics Res. 6(2), 3–15 (1987)

    Article  Google Scholar 

  48. H. Hanafusa, T. Yoshikawa, Y. Nakamura: Analysis and control of articulated robot arms with redundancy, IFAC 8th Trienn. World Congr., Kyoto (1981) pp. 78–83

    Google Scholar 

  49. Y. Nakamura, H. Hanafusa: Task priority based redundancy control of robot manipulators. In: Robotics Research – The Second International Symposium, ed. by H. Hanafusa, H. Hinoue (MIT Press, Cambridge 1985) pp. 155–162

    Google Scholar 

  50. S. Chiaverini: Task-priority redundancy resolution with robustness to algorithmic singularities, 4th IFAC Symp. Robot Control, Capri (1994) pp. 393–399

    Google Scholar 

  51. S. Chiaverini: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators, IEEE Trans. Robotics Autom. 13, 398–410 (1997)

    Article  Google Scholar 

  52. K. Kazerounian, Z. Wang: Global versus local optimization in redundancy resolution of robotic manipulators, Int. J. Robotics Res. 7(5), 312 (1988)

    Article  Google Scholar 

  53. J.M. Hollerbach, K.C. Suh: Redundancy resolution of manipulators through torque optimization, IEEE J. Robotics Autom. 3, 308–316 (1987)

    Article  Google Scholar 

  54. A.A. Maciejewski: Kinetic limitations on the use of redundancy in robotic manipulators, IEEE Trans. Robotics Autom. 7(2), 205–210 (1991)

    Article  Google Scholar 

  55. J.M. Hollerbach, K.C. Suh: Local versus global torque optimization of redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Raleigh (1987) pp. 619–624

    Google Scholar 

  56. T. Shamir, Y. Yomdin: Repeatability of redundant manipulators: Mathematical solution of the problem, IEEE Trans. Autom. Control 33, 1004–1009 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  57. R.G. Roberts, A.A. Maciejewski: Repeatable generalized inverse control strategies for kinematically redundant manipulators, IEEE Trans. Autom. Control 38(5), 689–699 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. B.S. Dhillon, A.R.M. Fashandi, K.L. Liu: Robot systems reliability and safety: A review, J. Qual. Maint. Eng. 8(3), 170–212 (2002)

    Article  Google Scholar 

  59. M.L. Visinsky, J.R. Cavallaro, I.D. Walker: A dynamic fault tolerance framework for remote robots, IEEE Trans. Robotics Autom. 11(4), 477–490 (1995)

    Article  Google Scholar 

  60. J.D. English, A.A. Maciejewski: Fault tolerance for kinematically redundant manipulators: Anticipating free-swinging joint failures, IEEE Trans. Robotics Autom. 14, 566–575 (1998)

    Article  Google Scholar 

  61. P. Nieminen, S. Esque, A. Muhammad, J. Mattila, J. Väyrynen, M. Siuko, M. Vilenius: Water hydraulic manipulator for fail safe and fault tolerant remote handling operations at ITER, Fusion Eng. Des. 84(7), 1420–1424 (2009)

    Article  Google Scholar 

  62. Y. Yi, J.E. McInroy, Y. Chen: Fault tolerance of parallel manipulators using task space and kinematic redundancy, IEEE Trans. Robotics 22(5), 1017–1021 (2006)

    Article  Google Scholar 

  63. A.A. Maciejewski, R.G. Roberts: On the existence of an optimally failure tolerant 7R manipulator Jacobian, Appl. Math. Comp. Sci. 5(2), 343–357 (1995)

    MATH  Google Scholar 

  64. R.G. Roberts, A.A. Maciejewski: A local measure of fault tolerance for kinematically redundant manipulators, IEEE Trans. Robotics Autom. 12(4), 543–552 (1996)

    Article  Google Scholar 

  65. C.J.J. Paredis, P.K. Khosla: Fault tolerant task execution through global trajectory planning, Rel. Eng. Syst. Saf. 53, 225–235 (1996)

    Article  Google Scholar 

  66. C.L. Lewis, A.A. Maciejewski: Fault tolerant operation of kinematically redundant manipulators for locked joint failures, IEEE Trans. Robotics Autom. 13(4), 622–629 (1997)

    Article  Google Scholar 

  67. R.S. Jamisola Jr., A.A. Maciejewski, R.G. Roberts: Failure tolerant path planning for kinematically redundant manipulators anticipating locked-joint failures, IEEE Trans. Robotics 22(4), 603–612 (2006)

    Article  Google Scholar 

  68. K.N. Groom, A.A. Maciejewski, V. Balakrishnan: Real-time failure-tolerant control of kinematically redundant manipulators, IEEE Trans. Robotics Autom. 15(6), 1109–1116 (1999)

    Article  Google Scholar 

  69. K.M. Ben-Gharbia, A.A. Maciejewski, R.G. Roberts: Kinematic design of redundant robotic manipulators for spatial positioning that are optimally fault tolerant, IEEE Trans. Robotics Autom. 29(5), 1300–1307 (2013)

    Article  Google Scholar 

  70. J. Salisbury, J. Abramowitz: Design and control of a redundant mechanism for small motion, IEEE Int. Conf. Robotics Autom. (ICRA), St. Louis (1985) pp. 323–328

    Google Scholar 

  71. J. Baillieul: Design of kinematically redundant mechanisms, 24th IEEE Conf. Decis. Control, Ft. Lauderdale (1985) pp. 18–21

    Google Scholar 

  72. G.S. Chirikjian, J.W. Burdick: Design and experiments with a 30 DoF robot, IEEE Int. Conf. Robotics Autom. (ICRA), Atlanta (1993) pp. 113–119

    Google Scholar 

  73. J. Angeles: The design of isotropic manipulator architectures in the presence of redundancies, Int. J. Robotics Res. 11(3), 196–201 (1992)

    Article  Google Scholar 

  74. A. Bowling, O. Khatib: Design of macro/mini manipulators for optimal dynamic performance, IEEE Int. Conf. Robotics Autom. (ICRA), Albuquerqe (1997) pp. 449–454

    Google Scholar 

  75. J.M. Hollerbach: Optimum kinematic design for a seven degree of freedom manipulator. In: Robotics Research – The Second International Symposium, ed. by H. Hanafusa, H. Hinoue (MIT Press, Cambridge 1985) pp. 216–222

    Google Scholar 

  76. O. Egeland, J.R. Sagli, S. Hendseth, F. Wilhelmsen: Dynamic coordination in a manipulator with seven joints, IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 125–130

    Google Scholar 

  77. S. Chiaverini, B. Siciliano, O. Egeland: Kinematic analysis and singularity avoidance for a seven-joint manipulator, Am. Control Conf., San Diego (1990) pp. 2300–2305

    Google Scholar 

  78. D.R. Baker, C.W. Wampler: On the inverse kinematics of redundant manipulators, Int. J. Robotics Res. 7(2), 3–21 (1988)

    Article  Google Scholar 

  79. J.W. Burdick: On the inverse kinematics of redundant manipulators: Characterization of the self-motion manifolds, IEEE Int. Conf. Robotics Autom. (ICRA), Scottsdale (1989) pp. 264–270

    Google Scholar 

  80. S. Chiaverini, O. Egeland, R.K. Kanestrøm: Weighted damped least-squares in kinematic control of robotic manipulators, Adv. Robotics 7, 201–218 (1993)

    Article  Google Scholar 

  81. M. Kirćanski, M. Vukobratović: Trajectory planning for redundant manipulators in presence of obstacles, 5th CISM-IFToMM Symp. Theor. Pract. Robots Manip., Udine (1984) pp. 43–58

    Google Scholar 

  82. C.A. Klein: Use of redundancy in the design of robotic systems. In: Robotics Research – The Second International Symposium, ed. by H. Hanafusa, H. Hinoue (MIT Press, Cambridge 1985) pp. 207–214

    Google Scholar 

  83. J. Baillieul: Kinematic redundancy and the control of robots with flexible components, IEEE Int. Conf. Robotics Autom. (ICRA), Nice (1992) pp. 715–721

    Google Scholar 

  84. I.D. Walker: The use of kinematic redundancy in reducing impact and contact effects in manipulation, IEEE Int. Conf. Robotics Autom. (ICRA), Cincinnati (1990) pp. 434–439

    Google Scholar 

  85. M.W. Gertz, J.O. Kim, P.K. Khosla: Exploiting redundancy to reduce impact force, IEEE/RSJ Int. Workshop Intell. Robots Syst., Osaka (1991) pp. 179–184

    Google Scholar 

  86. T. Yoshikawa: Dynamic manipulability of robot manipulators, J. Robotics Syst. 2(1), 113–124 (1985)

    Google Scholar 

  87. G. Oriolo, M. Ottavi, M. Vendittelli: Probabilistic motion planning for redundant robots along given end-effector paths, IEEE/RSJ Int. Conf. Intell. Robots Syst., Lausanne (2002) pp. 1657–1662

    Google Scholar 

  88. D.N. Nenchev: Redundancy resolution through local optimization: A review, J. Robotics Syst. 6, 6 (1989)

    MATH  Google Scholar 

  89. A. De Luca, G. Oriolo: The reduced gradient method for solving redundancy in robot arms, Robotersysteme 7(2), 117–122 (1991)

    Google Scholar 

  90. S. Seereeram, J.T. Wen: A global approach to path planning for redundant manipulators, IEEE Trans. Robotics Autom. 11(1), 152–160 (1995)

    Article  Google Scholar 

  91. A. De Luca, G. Oriolo, B. Siciliano: Robot redundancy resolution at the acceleration level, Lab. Robotics Autom. 4(2), 97–106 (1992)

    Google Scholar 

  92. O. Khatib: Inertial properties in robotics manipulation: An object-level framework, Int. J. Robotics Res. 14(1), 19–36 (1995)

    Article  Google Scholar 

  93. C.A. Klein, C.H. Huang: Review of pseudoinverse control for use with kinematically redundant manipulators, IEEE Trans. Syst. Man Cybern. 13, 245–250 (1983)

    Article  Google Scholar 

  94. R. Mukherjee: Design of holonomic loops for repeatability in redundant manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Nagoya (1985) pp. 2785–2790

    Google Scholar 

  95. A. De Luca, G. Oriolo: Nonholonomic behavior in redundant robots under kinematic control, IEEE Trans. Robotics Autom. 13(5), 776–782 (1997)

    Article  Google Scholar 

  96. B. Bayle, J.Y. Fourquet, M. Renaud: Manipulability of wheeled-mobile manipulators: Application to motion generation, Int. J. Robotics Res. 22(7/8), 565–581 (2003)

    Article  Google Scholar 

  97. A. De Luca, G. Oriolo, P.R. Giordano: Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators, IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006) pp. 1867–1873

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Chiaverini .

Editor information

Editors and Affiliations

Video-References

Video-References

:

KUKA LBR iiwa – Kinematic redundancy available from http://handbookofrobotics.org/view-chapter/10/videodetails/813

:

Free floating autonomous valve turning (task priority redundancy control + task concurrence) available from http://handbookofrobotics.org/view-chapter/10/videodetails/814

:

Human inspired tele-impedance and minimum effort controller for improved manipulation performance available from http://handbookofrobotics.org/view-chapter/10/videodetails/815

:

Human motion mapping to a robot arm with redundancy resolution available from http://handbookofrobotics.org/view-chapter/10/videodetails/816

:

Configuration space control of KUKA lightweight robot LWR with EXARM exoskeleton available from http://handbookofrobotics.org/view-chapter/10/videodetails/817

:

FlexIRob – Teaching nullspace constraints in physical human-robot interaction available from http://handbookofrobotics.org/view-chapter/10/videodetails/818

:

Visual servoing control of baxter robot arms with obstacle avoidance using kinematic redundancy available from http://handbookofrobotics.org/view-chapter/10/videodetails/819

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiaverini, S., Oriolo, G., Maciejewski, A.A. (2016). Redundant Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics