Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. doi:10.1007/s00248-009-9531-y
CAS
CrossRef
PubMed
Google Scholar
Alexander DB, Zuberer DA (1991) Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45
CAS
CrossRef
Google Scholar
Arias P, Dankers C, Liu P, Pilkauskas P (2004) La economía mundial del banano 1985–2002
Google Scholar
Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570. doi:10.1007/s10529-010-0347-0
CAS
CrossRef
PubMed
Google Scholar
Bellamy A (2013) Banana production systems: identification of alternative systems for more sustainable production. Ambio 42:334–343. doi:10.1007/s13280-012-0341-y
CrossRef
PubMed
PubMed Central
Google Scholar
Bennett RS, Arneson PA (2003) Sigatoka negra. Spanish translation by Knight RJ Jr (2005). The Plant Health Instructor
Google Scholar
Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. doi:10.1186/1475-2859-13-66
CrossRef
PubMed
PubMed Central
Google Scholar
Castaño Zapata J (2006) Evaluación in vitro de extractos vegetales sobre Mycosphaerella fijiensis Morelet. Agronomia 14:37–50
Google Scholar
Ceballos I, Mosquera S, Angulo M et al (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653. doi:10.1007/s00248-012-0052-8
CrossRef
PubMed
Google Scholar
CEI-RD (2013) Perfil Económico del Banano. Centro de Exportación e Inversión de la República Dominicana. Santo Domingo República Dominicana
Google Scholar
Chuc-Uc J, Brito-Argáez L, Canto-Canché B (2011) The in vitro secretome of Mycosphaerella fijiensis induces cell death in banana leaves. Plant Physiol Biochem 49:572–578. doi:10.1016/j.plaphy.2011.02.006
CAS
CrossRef
PubMed
Google Scholar
De Souza R, Beneduzi A, Ambrosini A et al (2013) The effect of plant growth-promoting Rhizobacteria on the growth of rice (Oryza sativa L.) cropped in Southern Brazilian fields. Plant Soil 366:585–603. doi:10.1007/s11104-012-1430-1
CrossRef
Google Scholar
Djavaheri M, Mercado-Blanco J, Versluis C et al (2012) Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis. Microbiol Open 1:311–325. doi:10.1002/mbo3.32
CAS
CrossRef
Google Scholar
Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124:62–66. doi:10.1016/j.scienta.2009.12.012
CAS
CrossRef
Google Scholar
Etebu E, Pasberg-Gauhl C, Gauhl F, Daniel-Kalio L (2003) Preliminary studies of in vitro stimulation of sexual mating among isolates of Mycosphaerella fijiensis, causal agent of black sigatoka disease in bananas and plantains. Phytoparasitica 31:69–75. doi:10.1007/BF02979768
CrossRef
Google Scholar
FAO (2012) Crece la producción y la exportación de banano en la República Dominicana. http://www.fao.org/agronoticias/agro-noticias/detalle/es/c/127976/. Accessed 08 Feb 2014
FAO (2013) República Dominicana y la Unión Europea firman convenio para fortalecer industria bananera. http://www.fao.org/agronoticias/agro-noticias/detalle/es/c/179989/. Consultada el 10 Feb 2013
Ferreira CF, Oliveira Silva S, Damasco Sobrinho NP et al (2004) Molecular characterization of banana (AA) diploids with contrasting levels of black and yellow sigatoka resistance. Am J Appl Sci 1:276–278
Google Scholar
Ferro E, Wilson JS, Otsuki T (2015) The effect of product standards on agricultural exports. Food Policy 50:68–79. doi:10.1016/j.foodpol.2014.10.016
CrossRef
Google Scholar
Fishal EMM, Meon S, Yun WM (2010) Induction of tolerance to Fusarium wilt and defense-related mechanisms in the plantlets of susceptible berangan banana pre-inoculated with Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3). Agric Sci China 9:1140–1149. doi:10.1016/S1671-2927(09)60201-7
CrossRef
Google Scholar
García-Gutiérrez L, Romero D, Zeriouh H et al (2012) Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant Soil 358:201–212. doi:10.1007/s11104-012-1173-z
CrossRef
Google Scholar
Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G, Höfte M, Lemanceau P, Cooke BM (eds) New perspectives and approaches in plant growth-promoting Rhizobacteria research, pp 329–339. doi:10.1007/s10658-007-9162-4
Google Scholar
Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against Banana Bunchy Top Virus. Appl Soil Ecol 39:187–200. doi:10.1016/j.apsoil.2007.12.006
CrossRef
Google Scholar
Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51:16–25. doi:10.1016/j.biocontrol.2009.06.002
CAS
CrossRef
Google Scholar
Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100:1073–1084. doi:10.1093/aob/mcm191
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting Rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480
CAS
CrossRef
PubMed
Google Scholar
Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Micr 62:716–721. doi:10.1099/ijs.0.038075-0
CAS
CrossRef
Google Scholar
Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175
Google Scholar
Leiva-Mora M, Alvarado-Capó Y, Acosta-Suárez M et al (2010) Protocolo para la inoculación artificial de plantas de Musa spp. con Mycosphaerella fijiensis y evaluación de su respuesta mediante variables epifitiológicas y componentes de la resistencia. Biotecnología Vegetal 10:79–88
Google Scholar
Lhomme J, Francisco Jiménez O (1992) Estimating dew duration on banana and plantain leaves from standard meteorological observations. Agric For Meteorol 62:263–274. doi:10.1016/0168-1923(92)90018-Y
CrossRef
Google Scholar
Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918
CAS
CrossRef
PubMed
Google Scholar
Maheshwari DK (2011) Plant growth and health promoting bacteria. Microbiology monographs. Springer, Munster. doi:10.1007/978-3-642-13612-2
CrossRef
Google Scholar
Marcano IE (2014) Aislamiento y caracterización de bacterias de la rizosfera de banano (Musa sp.) en República Dominicana y selección de cepas para el desarrollo de biofertilizantes. Tesis Doctoral
Google Scholar
Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:922. doi:10.3389/fmicb.2015.00922
CrossRef
PubMed
PubMed Central
Google Scholar
Morales Romero L, Ullauri Espinoza MA, Dávila Martínez A, Folgueras Montiel M (2011) Respuesta de genotipos mejorados de plátanos (Musa spp.) a Mycosphaerella fijiensis Morelet 1–20
Google Scholar
O’Hara GW, Goss TJ, Dilworth MJ et al (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55(8):1870–1876
PubMed
PubMed Central
Google Scholar
Orjeda G (1998) Evaluación de la resistencia de los bananos a las enfermedades de Sigatoka negra y marchitamiento por Fusarium. Guías técnicas INIBAP 3. IPGRI, Roma, Italia; Red Internacional para el mejoramiento del banano y el plátano, Montpellier, Francia
Google Scholar
Oye Anda CC, de Boulois HD, Declerck S (2015) The arbuscular mycorrhiza fungus Rhizophagus Irregularis MUCL 41833 decreases disease severity of Black Sigatoka on banana c.v. Grande name, under in vitro culture conditions. Fruits 70:37–46. doi:10.1051/fruits/2014041
CrossRef
Google Scholar
Peeran MF, Nagendran K, Gandhi K, Raguchander T, Prabakar K (2014) Water in oil based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Protection 65:186–193. doi:10.1016/j.cropro.2014.07.010
CAS
CrossRef
Google Scholar
Peix A, Rivas R, Santa-Regina I et al (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Micr 54:847–850
CAS
CrossRef
Google Scholar
Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15
CAS
CrossRef
PubMed
Google Scholar
Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi:10.1146/annurev-phyto-082712-102340
CAS
CrossRef
PubMed
Google Scholar
Portal O, Acosta-Suárez M, Ocaña B et al (2012) A green fluorescent protein-transformed Mycosphaerella fijiensis strain shows increased aggressiveness on banana. Australas Plant Path 41:645–647. doi:10.1007/s13313-012-0155-1
CAS
CrossRef
Google Scholar
Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi:10.1016/j.pbi.2007.05.004
CAS
CrossRef
PubMed
Google Scholar
Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Ann Biochem 160:47–56
CAS
CrossRef
Google Scholar
Singh JS, Pandey VC, Singh DP (2011) Efficient Soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353. doi:10.1016/j.agee.2011.01.017
CrossRef
Google Scholar
Sinha RK, Valani D, Chauhan K, Agarwal S (2010) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. J. Agric Biotech Sustain Dev 2:113–128
CAS
Google Scholar
Valerio R, Lindorf H, García de García E (2002) Anatomía foliar comparada de ocho cultivares de banano con relación a la resistencia o susceptibilidad a la sigatoka (amarilla y negra). Agronomia Trop 52:507–521
Google Scholar
Van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191. doi:10.1016/j.tplants.2006.02.005
CrossRef
PubMed
Google Scholar
Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448. doi:10.1016/j.pbi.2008.05.005
CrossRef
PubMed
Google Scholar
Vishnevetsky J, White T Jr, Palmateer A et al (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. grand nain. Transgenic Res 20:61–72. doi:10.1007/s11248-010-9392-
CAS
CrossRef
PubMed
Google Scholar
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
CAS
PubMed
PubMed Central
Google Scholar