Advertisement

Induced Systemic Resistance Could Explain the Reduction in the Incidence of Black Sigatoka (Mycosphaerella fijiensis) in Banana Plants Inoculated with Bacteria Isolated from Banana Tree Roots in the Dominican Republic

Conference paper

Abstract

Black sigatoka caused by Mycosphaerella fijiensis (Morelet) is one of the main diseases affecting banana trees worldwide, resulting in a reduced fruit yield . Banana is a major export crop in many tropical and subtropical countries, and many farmers have decided to shift to an organic production system for produce that is destined for the international market. Induced systemic resistance (ISR) protects plants against disease-causing pathogens, and this mechanism can be triggered by some bacteria associated with plant roots. The inoculation of plant roots with bacteria able to induce systemic resistance in plants has been proposed for disease control in organic agriculture as an alternative to chemicals. Fifty-six nonpathogenic and endophytic strains isolated from roots of banana trees cv. Cavendish in organic systems from four regions of the Dominican Republic were the starting point for the present work. We used 26 of them to inoculate the root systems of banana plants, the leaves of which were inoculated with M. fijiensis inoculum, in order to analyse their effect on the control of black sigatoka under growth chamber conditions. The selection of the 26 strains to be tested in plants was based on the following plant growth-promoting (PGP) traits : production of siderophore (17 strains), production of IAA (two strains) and ACC deaminase activity (two strains); the remaining five showed low values for all of the PGP traits. The best controllers of sigatoka were five strains from the genus Bacillus (related to B. licheniformis, B. siamensis and B. subtilis ssp. inaquosorum) and one Rhizobium massiliae. With the six strains, the severity index (SI) of the plants coinoculated with the bacteria and the pathogen did not differ from the noninoculated control. The sigatoka control observed has been tentatively assigned to ISR phenomena, which is discussed in the chapter. The six selected strains could be used in the short term to control black sigatoka in organic banana production systems in the Dominican Republic.

Keywords

Organic agriculture Mycosphaerella fijiensis Black sigatoka Banana tree Induced systemic resistance Bacillus 

Notes

Acknowledgements

This work has been financially supported by the Spanish Ministry of Foreign Affairs and Cooperation (Projects PCI-AECID A/023132/09, PCI-AECID A/030020/10 and PCI-AECID A1/035364/11). I.-E. M. was granted by the Spanish Ministry of Foreign Affairs and Cooperation (MAEC-AECID grant 2010-2014). The manuscript has been professionally proof read by PRS.

References

  1. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. doi: 10.1007/s00248-009-9531-y CrossRefPubMedGoogle Scholar
  2. Alexander DB, Zuberer DA (1991) Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45CrossRefGoogle Scholar
  3. Arias P, Dankers C, Liu P, Pilkauskas P (2004) La economía mundial del banano 1985–2002Google Scholar
  4. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570. doi: 10.1007/s10529-010-0347-0 CrossRefPubMedGoogle Scholar
  5. Bellamy A (2013) Banana production systems: identification of alternative systems for more sustainable production. Ambio 42:334–343. doi: 10.1007/s13280-012-0341-y CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bennett RS, Arneson PA (2003) Sigatoka negra. Spanish translation by Knight RJ Jr (2005). The Plant Health InstructorGoogle Scholar
  7. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. doi: 10.1186/1475-2859-13-66 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Castaño Zapata J (2006) Evaluación in vitro de extractos vegetales sobre Mycosphaerella fijiensis Morelet. Agronomia 14:37–50Google Scholar
  9. Ceballos I, Mosquera S, Angulo M et al (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653. doi: 10.1007/s00248-012-0052-8 CrossRefPubMedGoogle Scholar
  10. CEI-RD (2013) Perfil Económico del Banano. Centro de Exportación e Inversión de la República Dominicana. Santo Domingo República DominicanaGoogle Scholar
  11. Chuc-Uc J, Brito-Argáez L, Canto-Canché B (2011) The in vitro secretome of Mycosphaerella fijiensis induces cell death in banana leaves. Plant Physiol Biochem 49:572–578. doi: 10.1016/j.plaphy.2011.02.006 CrossRefPubMedGoogle Scholar
  12. De Souza R, Beneduzi A, Ambrosini A et al (2013) The effect of plant growth-promoting Rhizobacteria on the growth of rice (Oryza sativa L.) cropped in Southern Brazilian fields. Plant Soil 366:585–603. doi: 10.1007/s11104-012-1430-1 CrossRefGoogle Scholar
  13. Djavaheri M, Mercado-Blanco J, Versluis C et al (2012) Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis. Microbiol Open 1:311–325. doi: 10.1002/mbo3.32 CrossRefGoogle Scholar
  14. Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124:62–66. doi: 10.1016/j.scienta.2009.12.012 CrossRefGoogle Scholar
  15. Etebu E, Pasberg-Gauhl C, Gauhl F, Daniel-Kalio L (2003) Preliminary studies of in vitro stimulation of sexual mating among isolates of Mycosphaerella fijiensis, causal agent of black sigatoka disease in bananas and plantains. Phytoparasitica 31:69–75. doi: 10.1007/BF02979768 CrossRefGoogle Scholar
  16. FAO (2012) Crece la producción y la exportación de banano en la República Dominicana. http://www.fao.org/agronoticias/agro-noticias/detalle/es/c/127976/. Accessed 08 Feb 2014
  17. FAO (2013) República Dominicana y la Unión Europea firman convenio para fortalecer industria bananera. http://www.fao.org/agronoticias/agro-noticias/detalle/es/c/179989/. Consultada el 10 Feb 2013
  18. Ferreira CF, Oliveira Silva S, Damasco Sobrinho NP et al (2004) Molecular characterization of banana (AA) diploids with contrasting levels of black and yellow sigatoka resistance. Am J Appl Sci 1:276–278Google Scholar
  19. Ferro E, Wilson JS, Otsuki T (2015) The effect of product standards on agricultural exports. Food Policy 50:68–79. doi: 10.1016/j.foodpol.2014.10.016 CrossRefGoogle Scholar
  20. Fishal EMM, Meon S, Yun WM (2010) Induction of tolerance to Fusarium wilt and defense-related mechanisms in the plantlets of susceptible berangan banana pre-inoculated with Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3). Agric Sci China 9:1140–1149. doi: 10.1016/S1671-2927(09)60201-7 CrossRefGoogle Scholar
  21. García-Gutiérrez L, Romero D, Zeriouh H et al (2012) Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant Soil 358:201–212. doi: 10.1007/s11104-012-1173-z CrossRefGoogle Scholar
  22. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G, Höfte M, Lemanceau P, Cooke BM (eds) New perspectives and approaches in plant growth-promoting Rhizobacteria research, pp 329–339. doi: 10.1007/s10658-007-9162-4 Google Scholar
  23. Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against Banana Bunchy Top Virus. Appl Soil Ecol 39:187–200. doi: 10.1016/j.apsoil.2007.12.006 CrossRefGoogle Scholar
  24. Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51:16–25. doi: 10.1016/j.biocontrol.2009.06.002 CrossRefGoogle Scholar
  25. Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100:1073–1084. doi: 10.1093/aob/mcm191 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting Rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480CrossRefPubMedGoogle Scholar
  27. Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Micr 62:716–721. doi: 10.1099/ijs.0.038075-0 CrossRefGoogle Scholar
  28. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  29. Leiva-Mora M, Alvarado-Capó Y, Acosta-Suárez M et al (2010) Protocolo para la inoculación artificial de plantas de Musa spp. con Mycosphaerella fijiensis y evaluación de su respuesta mediante variables epifitiológicas y componentes de la resistencia. Biotecnología Vegetal 10:79–88Google Scholar
  30. Lhomme J, Francisco Jiménez O (1992) Estimating dew duration on banana and plantain leaves from standard meteorological observations. Agric For Meteorol 62:263–274. doi: 10.1016/0168-1923(92)90018-Y CrossRefGoogle Scholar
  31. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556. doi: 10.1146/annurev.micro.62.081307.162918 CrossRefPubMedGoogle Scholar
  32. Maheshwari DK (2011) Plant growth and health promoting bacteria. Microbiology monographs. Springer, Munster. doi: 10.1007/978-3-642-13612-2 CrossRefGoogle Scholar
  33. Marcano IE (2014) Aislamiento y caracterización de bacterias de la rizosfera de banano (Musa sp.) en República Dominicana y selección de cepas para el desarrollo de biofertilizantes. Tesis DoctoralGoogle Scholar
  34. Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:922. doi: 10.3389/fmicb.2015.00922 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Morales Romero L, Ullauri Espinoza MA, Dávila Martínez A, Folgueras Montiel M (2011) Respuesta de genotipos mejorados de plátanos (Musa spp.) a Mycosphaerella fijiensis Morelet 1–20Google Scholar
  36. O’Hara GW, Goss TJ, Dilworth MJ et al (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55(8):1870–1876PubMedPubMedCentralGoogle Scholar
  37. Orjeda G (1998) Evaluación de la resistencia de los bananos a las enfermedades de Sigatoka negra y marchitamiento por Fusarium. Guías técnicas INIBAP 3. IPGRI, Roma, Italia; Red Internacional para el mejoramiento del banano y el plátano, Montpellier, FranciaGoogle Scholar
  38. Oye Anda CC, de Boulois HD, Declerck S (2015) The arbuscular mycorrhiza fungus Rhizophagus Irregularis MUCL 41833 decreases disease severity of Black Sigatoka on banana c.v. Grande name, under in vitro culture conditions. Fruits 70:37–46. doi: 10.1051/fruits/2014041 CrossRefGoogle Scholar
  39. Peeran MF, Nagendran K, Gandhi K, Raguchander T, Prabakar K (2014) Water in oil based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Protection 65:186–193. doi: 10.1016/j.cropro.2014.07.010 CrossRefGoogle Scholar
  40. Peix A, Rivas R, Santa-Regina I et al (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Micr 54:847–850CrossRefGoogle Scholar
  41. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15CrossRefPubMedGoogle Scholar
  42. Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi: 10.1146/annurev-phyto-082712-102340 CrossRefPubMedGoogle Scholar
  43. Portal O, Acosta-Suárez M, Ocaña B et al (2012) A green fluorescent protein-transformed Mycosphaerella fijiensis strain shows increased aggressiveness on banana. Australas Plant Path 41:645–647. doi: 10.1007/s13313-012-0155-1 CrossRefGoogle Scholar
  44. Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi: 10.1016/j.pbi.2007.05.004 CrossRefPubMedGoogle Scholar
  45. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Ann Biochem 160:47–56CrossRefGoogle Scholar
  46. Singh JS, Pandey VC, Singh DP (2011) Efficient Soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353. doi: 10.1016/j.agee.2011.01.017 CrossRefGoogle Scholar
  47. Sinha RK, Valani D, Chauhan K, Agarwal S (2010) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. J. Agric Biotech Sustain Dev 2:113–128Google Scholar
  48. Valerio R, Lindorf H, García de García E (2002) Anatomía foliar comparada de ocho cultivares de banano con relación a la resistencia o susceptibilidad a la sigatoka (amarilla y negra). Agronomia Trop 52:507–521Google Scholar
  49. Van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191. doi: 10.1016/j.tplants.2006.02.005 CrossRefPubMedGoogle Scholar
  50. Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448. doi: 10.1016/j.pbi.2008.05.005 CrossRefPubMedGoogle Scholar
  51. Vishnevetsky J, White T Jr, Palmateer A et al (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. grand nain. Transgenic Res 20:61–72. doi: 10.1007/s11248-010-9392- CrossRefPubMedGoogle Scholar
  52. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Facultad de Ciencias Agronómicas y VeterinariasUniversidad Autónoma de Santo DomingoSanto DomingoDominican Republic
  2. 2.Departamento de Ingeniería y Ciencias AgrariasUniversidad de LeónLeónSpain
  3. 3.Departamento de Ingeniería Agrícola y ForestalUniversidad de ValladolidValladolidSpain
  4. 4.Instituto de Medio Ambiente, Recursos Naturales y BiodiversidadUniversidad de LeónLeónSpain

Personalised recommendations