Abstract
Black sigatoka caused by Mycosphaerella fijiensis (Morelet) is one of the main diseases affecting banana trees worldwide, resulting in a reduced fruit yield . Banana is a major export crop in many tropical and subtropical countries, and many farmers have decided to shift to an organic production system for produce that is destined for the international market. Induced systemic resistance (ISR) protects plants against disease-causing pathogens, and this mechanism can be triggered by some bacteria associated with plant roots. The inoculation of plant roots with bacteria able to induce systemic resistance in plants has been proposed for disease control in organic agriculture as an alternative to chemicals. Fifty-six nonpathogenic and endophytic strains isolated from roots of banana trees cv. Cavendish in organic systems from four regions of the Dominican Republic were the starting point for the present work. We used 26 of them to inoculate the root systems of banana plants, the leaves of which were inoculated with M. fijiensis inoculum, in order to analyse their effect on the control of black sigatoka under growth chamber conditions. The selection of the 26 strains to be tested in plants was based on the following plant growth-promoting (PGP) traits : production of siderophore (17 strains), production of IAA (two strains) and ACC deaminase activity (two strains); the remaining five showed low values for all of the PGP traits. The best controllers of sigatoka were five strains from the genus Bacillus (related to B. licheniformis, B. siamensis and B. subtilis ssp. inaquosorum) and one Rhizobium massiliae. With the six strains, the severity index (SI) of the plants coinoculated with the bacteria and the pathogen did not differ from the noninoculated control. The sigatoka control observed has been tentatively assigned to ISR phenomena, which is discussed in the chapter. The six selected strains could be used in the short term to control black sigatoka in organic banana production systems in the Dominican Republic.
Keywords
- Organic agriculture
- Mycosphaerella fijiensis
- Black sigatoka
- Banana tree
- Induced systemic resistance
- Bacillus
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. doi:10.1007/s00248-009-9531-y
Alexander DB, Zuberer DA (1991) Use of Chrome Azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45
Arias P, Dankers C, Liu P, Pilkauskas P (2004) La economía mundial del banano 1985–2002
Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570. doi:10.1007/s10529-010-0347-0
Bellamy A (2013) Banana production systems: identification of alternative systems for more sustainable production. Ambio 42:334–343. doi:10.1007/s13280-012-0341-y
Bennett RS, Arneson PA (2003) Sigatoka negra. Spanish translation by Knight RJ Jr (2005). The Plant Health Instructor
Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. doi:10.1186/1475-2859-13-66
Castaño Zapata J (2006) Evaluación in vitro de extractos vegetales sobre Mycosphaerella fijiensis Morelet. Agronomia 14:37–50
Ceballos I, Mosquera S, Angulo M et al (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653. doi:10.1007/s00248-012-0052-8
CEI-RD (2013) Perfil Económico del Banano. Centro de Exportación e Inversión de la República Dominicana. Santo Domingo República Dominicana
Chuc-Uc J, Brito-Argáez L, Canto-Canché B (2011) The in vitro secretome of Mycosphaerella fijiensis induces cell death in banana leaves. Plant Physiol Biochem 49:572–578. doi:10.1016/j.plaphy.2011.02.006
De Souza R, Beneduzi A, Ambrosini A et al (2013) The effect of plant growth-promoting Rhizobacteria on the growth of rice (Oryza sativa L.) cropped in Southern Brazilian fields. Plant Soil 366:585–603. doi:10.1007/s11104-012-1430-1
Djavaheri M, Mercado-Blanco J, Versluis C et al (2012) Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis. Microbiol Open 1:311–325. doi:10.1002/mbo3.32
Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124:62–66. doi:10.1016/j.scienta.2009.12.012
Etebu E, Pasberg-Gauhl C, Gauhl F, Daniel-Kalio L (2003) Preliminary studies of in vitro stimulation of sexual mating among isolates of Mycosphaerella fijiensis, causal agent of black sigatoka disease in bananas and plantains. Phytoparasitica 31:69–75. doi:10.1007/BF02979768
FAO (2012) Crece la producción y la exportación de banano en la República Dominicana. http://www.fao.org/agronoticias/agro-noticias/detalle/es/c/127976/. Accessed 08 Feb 2014
FAO (2013) República Dominicana y la Unión Europea firman convenio para fortalecer industria bananera. http://www.fao.org/agronoticias/agro-noticias/detalle/es/c/179989/. Consultada el 10 Feb 2013
Ferreira CF, Oliveira Silva S, Damasco Sobrinho NP et al (2004) Molecular characterization of banana (AA) diploids with contrasting levels of black and yellow sigatoka resistance. Am J Appl Sci 1:276–278
Ferro E, Wilson JS, Otsuki T (2015) The effect of product standards on agricultural exports. Food Policy 50:68–79. doi:10.1016/j.foodpol.2014.10.016
Fishal EMM, Meon S, Yun WM (2010) Induction of tolerance to Fusarium wilt and defense-related mechanisms in the plantlets of susceptible berangan banana pre-inoculated with Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3). Agric Sci China 9:1140–1149. doi:10.1016/S1671-2927(09)60201-7
García-Gutiérrez L, Romero D, Zeriouh H et al (2012) Isolation and selection of plant growth-promoting rhizobacteria as inducers of systemic resistance in melon. Plant Soil 358:201–212. doi:10.1007/s11104-012-1173-z
Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G, Höfte M, Lemanceau P, Cooke BM (eds) New perspectives and approaches in plant growth-promoting Rhizobacteria research, pp 329–339. doi:10.1007/s10658-007-9162-4
Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against Banana Bunchy Top Virus. Appl Soil Ecol 39:187–200. doi:10.1016/j.apsoil.2007.12.006
Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51:16–25. doi:10.1016/j.biocontrol.2009.06.002
Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100:1073–1084. doi:10.1093/aob/mcm191
Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting Rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480
Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Micr 62:716–721. doi:10.1099/ijs.0.038075-0
Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175
Leiva-Mora M, Alvarado-Capó Y, Acosta-Suárez M et al (2010) Protocolo para la inoculación artificial de plantas de Musa spp. con Mycosphaerella fijiensis y evaluación de su respuesta mediante variables epifitiológicas y componentes de la resistencia. Biotecnología Vegetal 10:79–88
Lhomme J, Francisco Jiménez O (1992) Estimating dew duration on banana and plantain leaves from standard meteorological observations. Agric For Meteorol 62:263–274. doi:10.1016/0168-1923(92)90018-Y
Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918
Maheshwari DK (2011) Plant growth and health promoting bacteria. Microbiology monographs. Springer, Munster. doi:10.1007/978-3-642-13612-2
Marcano IE (2014) Aislamiento y caracterización de bacterias de la rizosfera de banano (Musa sp.) en República Dominicana y selección de cepas para el desarrollo de biofertilizantes. Tesis Doctoral
Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:922. doi:10.3389/fmicb.2015.00922
Morales Romero L, Ullauri Espinoza MA, Dávila Martínez A, Folgueras Montiel M (2011) Respuesta de genotipos mejorados de plátanos (Musa spp.) a Mycosphaerella fijiensis Morelet 1–20
O’Hara GW, Goss TJ, Dilworth MJ et al (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55(8):1870–1876
Orjeda G (1998) Evaluación de la resistencia de los bananos a las enfermedades de Sigatoka negra y marchitamiento por Fusarium. Guías técnicas INIBAP 3. IPGRI, Roma, Italia; Red Internacional para el mejoramiento del banano y el plátano, Montpellier, Francia
Oye Anda CC, de Boulois HD, Declerck S (2015) The arbuscular mycorrhiza fungus Rhizophagus Irregularis MUCL 41833 decreases disease severity of Black Sigatoka on banana c.v. Grande name, under in vitro culture conditions. Fruits 70:37–46. doi:10.1051/fruits/2014041
Peeran MF, Nagendran K, Gandhi K, Raguchander T, Prabakar K (2014) Water in oil based PGPR formulation of Pseudomonas fluorescens (FP7) showed enhanced resistance against Colletotrichum musae. Crop Protection 65:186–193. doi:10.1016/j.cropro.2014.07.010
Peix A, Rivas R, Santa-Regina I et al (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Micr 54:847–850
Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15
Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi:10.1146/annurev-phyto-082712-102340
Portal O, Acosta-Suárez M, Ocaña B et al (2012) A green fluorescent protein-transformed Mycosphaerella fijiensis strain shows increased aggressiveness on banana. Australas Plant Path 41:645–647. doi:10.1007/s13313-012-0155-1
Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi:10.1016/j.pbi.2007.05.004
Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Ann Biochem 160:47–56
Singh JS, Pandey VC, Singh DP (2011) Efficient Soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353. doi:10.1016/j.agee.2011.01.017
Sinha RK, Valani D, Chauhan K, Agarwal S (2010) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. J. Agric Biotech Sustain Dev 2:113–128
Valerio R, Lindorf H, García de García E (2002) Anatomía foliar comparada de ocho cultivares de banano con relación a la resistencia o susceptibilidad a la sigatoka (amarilla y negra). Agronomia Trop 52:507–521
Van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191. doi:10.1016/j.tplants.2006.02.005
Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448. doi:10.1016/j.pbi.2008.05.005
Vishnevetsky J, White T Jr, Palmateer A et al (2011) Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. grand nain. Transgenic Res 20:61–72. doi:10.1007/s11248-010-9392-
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
Acknowledgements
This work has been financially supported by the Spanish Ministry of Foreign Affairs and Cooperation (Projects PCI-AECID A/023132/09, PCI-AECID A/030020/10 and PCI-AECID A1/035364/11). I.-E. M. was granted by the Spanish Ministry of Foreign Affairs and Cooperation (MAEC-AECID grant 2010-2014). The manuscript has been professionally proof read by PRS.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Marcano, IE., Díaz-Alcántara, CA., Seco, V., Urbano, B., González-Andrés, F. (2016). Induced Systemic Resistance Could Explain the Reduction in the Incidence of Black Sigatoka (Mycosphaerella fijiensis) in Banana Plants Inoculated with Bacteria Isolated from Banana Tree Roots in the Dominican Republic. In: González-Andrés, F., James, E. (eds) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-32528-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-32528-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32526-2
Online ISBN: 978-3-319-32528-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)