Skip to main content

Effect of Surface Dopant Concentration

  • Chapter
  • First Online:
  • 655 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The effectiveness of Al\(_{2}\)O\(_{3}\) surface passivation depends not only on the processing history of the film, but also on the properties of the semiconductor surface on which it is deposited. In this chapter we examine the influence of surface dopant type and concentration on the recombination rate at Al\(_{2}\)O\(_{3}\)-passivated surfaces.

It is vain to do with more what can be done with less.

—William of Ockham

Summa Totius Logicae

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that some authors use \(S_{n{0}}\) or \(S_{p{0}}\) to refer to what is essentially an effective surface recombination velocity including the influence of charge, identical to our \(S_{\textit{eff}}\). This is because they make the implicit assumption that \(Q_{\textit{tot}} = 0\), so that \(S_{\textit{eff}} = S_{n{0}}\) or \(S_{p{0}}\) from (7.1). It should also be noted that \(S_{n{0}}\) and \(S_{p{0}}\) do not bear a simple relation to the parameter \(S_0\) measured at depleted surfaces in the absence of illumination [2, 32] (for example via the pulsed MIS capacitor technique [33]) since in the latter case the emission-related terms in (2.18) become significant and only defects near the middle of the bandgap effectively contribute to recombination or generation.

References

  1. Snel, J.: The doped Si/SiO\(_2\) interface. Solid-State Electron. 24, 135–139 (1981)

    Article  Google Scholar 

  2. Ghannam, M.Y., Mertens, R., De Keersmaecker, R., Van Overstraeten, R.: Electrical characterization of the boron-doped Si-SiO\(_2\) interface. IEEE Trans. Electron Devices 32, 1264–1271 (1985)

    Article  Google Scholar 

  3. Jin, H., Jellett, W.E., Chun, Z., Weber, K.J., Blakers, A.W., Smith, P.J.: The effect of boron diffusions on the defect density and recombination at the (111) silicon-silicon oxide interface. Appl. Phys. Lett. 92, 122109 (2008)

    Article  Google Scholar 

  4. Aberle, A.G., Glunz, S., Warta, W.: Impact of illumination level and oxide parameters on Shockley-Read-Hall recombination at the Si-SiO\(_2\) interface. J. Appl. Phys. 71, 4422–4431 (1992)

    Article  Google Scholar 

  5. King, R., Sinton, R., Swanson, R.: Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency. IEEE Trans. Electron Devices 37, 365–371 (1990)

    Article  Google Scholar 

  6. King, R.R., Swanson, R.: Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity. IEEE Trans. Electron Devices 38, 1399–1409 (1991)

    Article  Google Scholar 

  7. Cuevas, A., Basore, P.A., Giroult-Matlakowski, G., Dubois, C.: Surface recombination velocity of highly doped n-type silicon. J. Appl. Phys. 80, 3370–3375 (1996)

    Article  Google Scholar 

  8. Cuevas, A., Stuckings, M., Lau, J., Petravic, M.: The recombination velocity of boron diffused silicon surfaces. In: Proceedings of 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain: HS Stephens, Falmerston, UK, pp. 2416–2419 (1997)

    Google Scholar 

  9. Altermatt, P.P., Schumacher, J.O., Cuevas, A., Kerr, M.J., Glunz, S.W., King, R.R., Heiser, G., Schenk, A.: Numerical modeling of highly doped Si: P emitters based on Fermi-Dirac statistics and self-consistent material parameters. J. Appl. Phys. 92, 3187–3197 (2002)

    Article  Google Scholar 

  10. Cuevas, A., Kerr, M.J., Schmidt, J.: Passivation of crystalline silicon using silicon nitride. In: Proceedings of 3rd World Conference Photovoltaic Energy Conversion, pp. 913–918. Osaka, Japan (2003)

    Google Scholar 

  11. Altermatt, P.P., Plagwitz, H., Bock, R., Schmidt, J., Brendel, R., Kerr, M.J., Cuevas, A.: The surface recombination velocity at boron-doped emitters: comparison between various passivation techniques. In: Proceedings of 21st European Photovoltaic Solar Energy Conference, pp. 647–650. Dresden, Germany: WIP, Munich (2006)

    Google Scholar 

  12. Black, L.E., Allen, T., McIntosh, K.R., Cuevas, A.: Effect of boron concentration on recombination at the \(p\)-Si-Al\(_2\)O\(_3\) interface. J. Appl. Phys. 115, 093707 (2014)

    Article  Google Scholar 

  13. Dauwe, S., Mittelstädt, L., Metz, A., Hezel, R.: Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Prog. Photovolt. 10, 271–278 (2002)

    Article  Google Scholar 

  14. Kerr, M.J.: Surface, emitter and bulk recombination in silicon and development of silicon nitride passivated solar cells. Ph.D. thesis, The Australian National University (2002)

    Google Scholar 

  15. Hoex, B., Schmidt, J., Bock, R., Altermatt, P.P., Sanden, MCMvd, Kessels, W.M.M.: Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al\(_2\)O\(_3\). Appl. Phys. Lett. 91, 112107 (2007)

    Article  Google Scholar 

  16. Duttagupta, S., Lin, F., Shetty, K.D., Aberle, A.G., Hoex, B.: Excellent boron emitter passivation for high-efficiency Si wafer solar cells using AlO\(_x\)/SiN\(_x\) dielectric stacks deposited in an industrial inline plasma reactor. Prog. Photovolt.: Res. Appl. 21, 760–764 (2012)

    Google Scholar 

  17. Saint-Cast, P., Richter, A., Billot, E., Hofmann, M., Benick, J., Rentsch, J., Preu, R., Glunz, S.W.: Very low surface recombination velocity of boron doped emitter passivated with plasma-enhanced chemical-vapor-deposited AlO\(_x\) layers. Thin Solid Films 522, 336–339 (2012)

    Article  Google Scholar 

  18. Ma, F.-J., Duttagupta, S., Peters, M., Samudra, G.S., Aberle, A.G., Hoex, B.: Numerical modelling of silicon p+ emitters passivated by a PECVD AlO\(_x\)/SiN\(_x\) stack. Energy Procedia 33, 104–109 (2013)

    Article  Google Scholar 

  19. Duttagupta, S., Ma, F.-J., Lin, S.F., Mueller, T., Aberle, A.G., Hoex, B.: Progress in surface passivation of heavily doped n-type and p-type silicon by plasma-deposited AlO\(_x\)/SiN\(_x\) dielectric stacks. IEEE J. Photovolt. 3, 1163–1169 (2013)

    Article  Google Scholar 

  20. Richter, A., Benick, J., Hermle, M.: Boron emitter passivation with Al\(_2\)O\(_3\) and Al\(_2\)O\(_3\)/SiN\(_x\) stacks using ALD Al\(_2\)O\(_3\). IEEE J. Photovolt. 3, 236–245 (2013)

    Article  Google Scholar 

  21. Brody, J., Rohatgi, A., Ristow, A.: Guidelines for more accurate determination and interpretation of effective lifetime from measured quasisteady-state photoconductance. In: Proceedings of 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes, pp. 163–167. Estes Park, Colorado (2001)

    Google Scholar 

  22. McIntosh, K.R., Black, L.E.: On effective surface recombination parameters. J. Appl. Phys. 116, 014503 (2014)

    Article  Google Scholar 

  23. Black, L.E., Provancha, K. M., McIntosh, K.R.: Surface passivation of crystalline silicon by APCVD aluminium oxide. In: Proceedings of 26th European Photovoltaic Solar Energy Conference, pp. 1120–1124. Hamburg, Germany (2011)

    Google Scholar 

  24. Liang, W., Weber, K.J., Suh, D., Phang, S.P., Yu, J., McAuley, A.K., Legg, B.R.: Surface passivation of boron-diffused p-type silicon surfaces with (100) and (111) orientations by ALD Al\(_2\)O\(_3\) layers. IEEE J. Photovolt. 3, 678–683 (2013)

    Article  Google Scholar 

  25. Liao, B., Stangl, R., Ma, F., Hameiri, Z., Mueller, T., Chi, D., Aberle, A.G., Bhatia, C.S., Hoex, B.: Deposition temperature independent excellent passivation of highly boron doped silicon emitters by thermal atomic layer deposited Al\(_2\)O\(_3\). J. Appl. Phys. 114, 094505 (2013)

    Article  Google Scholar 

  26. McIntosh, K., Altermatt, P.: A freeware 1D emitter model for silicon solar cells. In: Proceedings of 35th IEEE Photovoltaic Specialists Conference, pp. 002 188–002 193 (2010)

    Google Scholar 

  27. Yan, D., Cuevas, A.: Empirical determination of the energy band gap narrowing in highly doped n+ silicon. J. Appl. Phys. 114, 044508 (2013)

    Article  Google Scholar 

  28. Klaassen, D.B.M., Slotboom, J.W., de Graaff, H.C.: Unified apparent bandgap narrowing in n- and p-type silicon. Solid-State Electron. 35, 125–129 (1992)

    Article  Google Scholar 

  29. Richter, A., Glunz, S.W., Werner, F., Schmidt, J., Cuevas, A.: Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012)

    Article  Google Scholar 

  30. Dziewior, J., Schmid, W.: Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31, 346–348 (1977)

    Article  Google Scholar 

  31. Kerr, M.J., Cuevas, A.: General parameterization of Auger recombination in crystalline silicon. J. Appl. Phys. 91, 2473–2480 (2002)

    Article  Google Scholar 

  32. Grove, A.S., Fitzgerald, D.J.: Surface effects on p-n junctions: characteristics of surface space-charge regions under non-equilibrium conditions. Solid-State Electron. 9, 783–806 (1966)

    Article  Google Scholar 

  33. Kang, J.S., Schroder, D.K.: The pulsed MIS capacitor: a critical review. Phys. Status Solidi A 89, 13–43 (1985)

    Article  Google Scholar 

  34. Hoex, B., Heil, S.B.S., Langereis, E., Sanden, MCMvd, Kessels, W.M.M.: Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al\(_2\)O\(_3\). Appl. Phys. Lett. 89, 042112 (2006)

    Article  Google Scholar 

  35. Hoex, B., Gielis, J.J.H., Sanden, MCMvd, Kessels, W.M.M.: On the c-Si surface passivation mechanism by the negative-charge-dielectric Al\(_2\)O\(_3\). J. Appl. Phys. 104, 113703 (2008)

    Article  Google Scholar 

  36. Dingemans, G., Seguin, R., Engelhart, P., Sanden, MCMvd, Kessels, W.M.M.: Silicon surface passivation by ultrathin Al\(_2\)O\(_3\) films synthesized by thermal and plasma atomic layer deposition. Phys. Status Solidi RRL 4, 10–12 (2010)

    Article  Google Scholar 

  37. Dingemans, G., Kessels, W.M.M.: Status and prospects of Al\(_2\)O\(_3\)-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 30, 040802 (2012)

    Article  Google Scholar 

  38. Zhang, X., Cuevas, A.: Plasma hydrogenated, reactively sputtered aluminium oxide for silicon surface passivation. Phys. Status Solidi RRL 7, 619–622 (2013)

    Article  Google Scholar 

  39. Dingemans, G., Terlinden, N.M., Verheijen, M.A., van de Sanden, M.C.M., Kessels, W.M.M.: Controlling the fixed charge and passivation properties of Si(100)/Al\(_2\)O\(_3\) interfaces using ultrathin SiO\(_2\) interlayers synthesized by atomic layer deposition. J. Appl. Phys. 110, 093715 (2011)

    Article  Google Scholar 

  40. Veith, B., Ohrdes, T., Werner, F., Brendel, R., Altermatt, P.P., Harder, N.-P., Schmidt, J.: Injection dependence of the effective lifetime of n-type Si passivated by Al\(_2\)O\(_3\): an edge effect? Sol. Energy Mater. Sol. Cells 120, Part A, 436–440 (2014)

    Google Scholar 

  41. Chan, C., Abbott, M., Juhl, M., Hallam, B., Xiao, B., Wenham, S.: Assessing the performance of surface passivation using low-intensity photoluminescence characterization techniques. IEEE J. Photovolt. 4, 100–106 (2014)

    Article  Google Scholar 

  42. Elmiger, J.R., Schieck, R., Kunst, M.: Recombination at the silicon nitride/silicon interface. J. Vac. Sci. Technol. A 15, 2418–2425 (1997)

    Article  Google Scholar 

  43. Schmidt, J., Aberle, A.G.: Carrier recombination at silicon-silicon nitride interfaces fabricated by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 85, 3626–3633 (1999)

    Article  Google Scholar 

  44. Schmidt, J., Moschner, J.D., Henze, J., Dauwe, S., Hezel, R.: Recent progress in the surface passivation of silicon solar cells using silicon nitride. In: Proceedings of 19th European Photovoltaic Solar Energy Conference, pp. 391–396. Paris, France (2004)

    Google Scholar 

  45. Glunz, S.W., Biro, D., Rein, S., Warta, W.: Field-effect passivation of the SiO\(_2\)-Si interface. J. Appl. Phys. 86, 683–691 (1999)

    Article  Google Scholar 

  46. Kerr, M.J., Cuevas, A.: Recombination at the interface between silicon and stoichiometric plasma silicon nitride. Semicond. Sci. Technol. 17, 166–172 (2002)

    Article  Google Scholar 

  47. Kerr, M.J., Cuevas, A.: Very low bulk and surface recombination in oxidized silicon wafers. Semicond. Sci. Technol. 17, 35–38 (2002)

    Article  Google Scholar 

  48. Chen, F.W., Cotter, J.E., Abbott, M., Li, T.-T.A., Fisher, K.: The influence of parasitic effects on injection-level-dependent lifetime data. IEEE Trans. Electron Devices 54, 2960–2968 (2007)

    Article  Google Scholar 

  49. Cousins, P.J., Neuhaus, D.H., Cotter, J.E.: Experimental verification of the effect of depletion-region modulation on photoconductance lifetime measurements. J. Appl. Phys. 95, 1854–1858 (2004)

    Article  Google Scholar 

  50. McIntosh, K.: A model for the steady-state photoconductance of an abrupt p-n junction semiconductor diode assuming at quasi-fermi levels. IEEE Trans. Electron Devices 54, 346–353 (2007)

    Article  Google Scholar 

  51. Dauwe, S., Schmidt, J., Metz, A., Hezel, R.: Fixed charge density in silicon nitride films on crystalline silicon surfaces under illumination, pp. 162–165 (2002)

    Google Scholar 

  52. Martin, I., Hoex, B., Van de Sanden, M.C.M., Alcubilla, R., Kessels, W.M.M.: The origin of emitter-like recombination for inverted c-Si surfaces. In: Proceedings of 23rd European Photovoltaic Solar Energy Conference, pp. 1388–1392. Valencia, Spain (2008)

    Google Scholar 

  53. Steingrube, S., Altermatt, P.P., Steingrube, D.S., Schmidt, J., Brendel, R.: Interpretation of recombination at c-Si/SiNx interfaces by surface damage. J. Appl. Phys. 108, 014506 (2010)

    Article  Google Scholar 

  54. Ma, F.-J., Samudra, G.G., Peters, M., Aberle, A.G., Werner, F., Schmidt, J., Hoex, B.: Advanced modeling of the effective minority carrier lifetime of passivated crystalline silicon wafers. J. Appl. Phys. 112, 054508 (2012)

    Article  Google Scholar 

  55. Steingrube, S., Altermatt, P.P., Zielke, D., Werner, F., Schmidt, J., Brendel, R., Reduced passivation of silicon surfaces at low injection densities caused by H-induced defects. In: Proceedings of 25th European Photovoltaic Solar Energy Conference, Valencia, Spain (2010)

    Google Scholar 

  56. Kessler, M., Ohrdes, T., Altermatt, P.P., Brendel, R.: The effect of sample edge recombination on the averaged injection-dependent carrier lifetime in silicon. J. Appl. Phys. 111, 054508 (2012)

    Article  Google Scholar 

  57. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  MATH  Google Scholar 

  58. Hoex, B., Sanden, MCMvd, Schmidt, J., Brendel, R., Kessels, W.M.M.: Surface passivation of phosphorous-diffused n+-type emitters by plasma-assisted atomic-layer deposited Al\(_2\)O\(_3\). Phys. Status Solidi RRL 6, 4–6 (2012)

    Article  Google Scholar 

  59. Sze, S.M.: Semiconductor Devices: Physics and Technology, 3rd edn. Wiley, NJ (2002)

    Google Scholar 

  60. Macdonald, D., Cuevas, A.: Reduced fill factors in multicrystalline silicon solar cells due to injection-level dependent bulk recombination lifetimes. Prog. Photovolt.: Res. Appl. 8, 363–375 (2000)

    Article  Google Scholar 

  61. Abbott, M., Scardera, G., McIntosh, K.R., Meisel, A.: Simulation of emitter doping profiles formed by industrial POCl3 processes. In: Proceedings of 39th IEEE Photovoltaic Specialists Conference, pp. 1383–1388. Tampa, FL (2013)

    Google Scholar 

  62. Min, B., Wagner, H., Dastgheib-Shirazi, A., Kimmerle, A., Kurz, H., Altermatt, P.P.: Heavily doped Si: P emitters of crystalline Si solar cells: Recombination due to phosphorus precipitation. Phys. Status Solidi RRL 8, 680–684 (2014)

    Article  Google Scholar 

  63. del Alamo, J., Swanson, R.: The physics and modeling of heavily doped emitters. IEEE Trans. Electron Devices 31, 1878–1888 (1984)

    Article  Google Scholar 

  64. Nicollian, E.H., Goetzberger, A.: The Si-SiO\(_2\) interface - electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46, 1055–1133 (1967)

    Article  Google Scholar 

  65. Nicollian, E.H., Brews, J.R.: MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley, New York (1982)

    Google Scholar 

  66. Sah, C.-T., Chan, P.C.H., Wang, C.-K., Sah, R.-Y., Yamakawa, K., Lutwack, R.: Effect of zinc impurity on silicon solar-cell efficiency. IEEE Trans. Electron Devices 28, 304–313 (1981)

    Article  Google Scholar 

  67. Wang, A.C., Lu, L.S., Sah, C.T.: Electron capture at the two acceptor levels of a zinc center in silicon. Phys. Rev. B 30, 5896–5903 (1984)

    Article  Google Scholar 

  68. Aberle, A.G.: Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis. Sydney, Australia: Centre for Photovoltaic Engineering, University of New South Wales (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lachlan E. Black .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Black, L.E. (2016). Effect of Surface Dopant Concentration. In: New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-32521-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32521-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32520-0

  • Online ISBN: 978-3-319-32521-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics