Skip to main content

Vitamin D in Children with Chronic Kidney Disease: A Focus on Longitudinal Bone Growth

  • Chapter
  • First Online:
  • 906 Accesses

Abstract

Growth retardation, decreased final height and renal osteodystrophy (ROD) are common complications of childhood chronic kidney disease (CKD), resulting from a combination of abnormalities in the growth hormone (GH) axis, vitamin D deficiency, hyperparathyroidism, hypogonadism, inadequate nutrition, cachexia and drug toxicity. The impact of CKD-associated bone and mineral disorders (CKD-MBD) may be immediate (serum phosphate/calcium disequilibrium) or delayed (poor growth, ROD, fractures, vascular calcifications, increased morbidity and mortality). Vitamin D metabolism is completely modified by CKD, and children with CKD are particularly prone to 25-D deficiency whilst beneficial effects of vitamin D on immunity, anemia, and cardiovascular outcomes have been described in pediatric CKD. Vitamin D also has a direct effect on bone biology and mineral metabolism. Native vitamin supplementation and active vitamin D analogs are currently the mainstay of therapy for children with CKD-MBD, decreasing PTH levels whilst increasing FGF23 levels. However, over-suppression of PTH levels in dialyzed children using vitamin D analogs may lead to adynamic bone disease, growth failure, cardiovascular calcifications, and growth plate inhibition. The aim of this review is therefore to focus on vitamin D effects on bone and longitudinal growth, and on the therapeutic use of the different vitamins D in pediatric CKD in 2015.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bacchetta J, Harambat J, Cochat P, Salusky IB, Wesseling-Perry K. The consequences of chronic kidney disease on bone metabolism and growth in children. Nephrol Dial Transplant. 2012;27:3063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Denburg MR, Kalkwarf HJ, de Boer IH, Hewison M, Shults J, Zemel BS, et al. Vitamin D bioavailability and catabolism in pediatric chronic kidney disease. Pediatr Nephrol. 2013;28:1843–53.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Menon S, Valentini RP, Hidalgo G, Peschansky L, Mattoo TK. Vitamin D insufficiency and hyperparathyroidism in children with chronic kidney disease. Pediatr Nephrol. 2008;23:1831–6.

    Article  PubMed  Google Scholar 

  4. Belostotsky V, Mughal MZ, Berry JL, Webb NJ. Vitamin D deficiency in children with renal disease. Arch Dis Child. 2008;93:959–62.

    Article  CAS  PubMed  Google Scholar 

  5. Bacchetta J, Dubourg L, Harambat J, Ranchin B, Abou-Jaoude P, Arnaud S, et al. The influence of glomerular filtration rate and age on fibroblast growth factor 23 serum levels in pediatric chronic kidney disease. J Clin Endocrinol Metab. 2010;95:1741–8.

    Article  CAS  PubMed  Google Scholar 

  6. Cho HY, Hyun HS, Kang HG, Ha IS, Cheong HI. Prevalence of 25(OH) vitamin D insufficiency and deficiency in pediatric patients on chronic dialysis. Perit Dial Int. 2013;33:398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar J, McDermott K, Abraham AG, Friedman LA, Johnson VL, Kaskel FJ, et al. Prevalence and correlates of 25-hydroxyvitamin D deficiency in the Chronic Kidney Disease in Children (CKiD) cohort. Pediatr Nephrol. 2016;31:121–9.

    Google Scholar 

  8. Shroff R, Wan M, Gullett A, Ledermann S, Shute R, Knott C, et al. Ergocalciferol supplementation in children with CKD delays the onset of secondary hyperparathyroidism: a randomized trial. Clin J Am Soc Nephrol. 2012;7:216–23.

    Article  CAS  PubMed  Google Scholar 

  9. Bacchetta J, Chun RF, Gales B, Zaritsky JJ, Leroy S, Wesseling-Perry K, et al. Antibacterial responses by peritoneal macrophages are enhanced following vitamin D supplementation. PLoS One. 2014;9:e116530.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bacchetta J, Zaritsky JJ, Sea JL, Chun RF, Lisse TS, Zavala K, et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25:564–72.

    Article  CAS  PubMed  Google Scholar 

  11. Rianthavorn P, Boonyapapong P. Ergocalciferol decreases erythropoietin resistance in children with chronic kidney disease stage 5. Pediatr Nephrol. 2013;28:1261–6.

    Article  PubMed  Google Scholar 

  12. Mahesh S, Kaskel F. Growth hormone axis in chronic kidney disease. Pediatr Nephrol. 2008;23:41–8.

    Article  PubMed  Google Scholar 

  13. Salusky IB, Goodman WG. Growth hormone and calcitriol as modifiers of bone formation in renal osteodystrophy. Kidney Int. 1995;48:657–65.

    Article  CAS  PubMed  Google Scholar 

  14. Kuizon BD, Salusky IB. Growth retardation in children with chronic renal failure. J Bone Miner Res. 1999;14:1680–90.

    Article  CAS  PubMed  Google Scholar 

  15. Naja RP, Dardenne O, Arabian A, St Arnaud R. Chondrocyte-specific modulation of Cyp27b1 expression supports a role for local synthesis of 1,25-dihydroxyvitamin D3 in growth plate development. Endocrinology. 2009;150:4024–32.

    Article  CAS  PubMed  Google Scholar 

  16. Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S, et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res. 2010;25:305–12.

    Article  CAS  PubMed  Google Scholar 

  17. Scheimberg I, Perry L. Does low vitamin D have a role in pediatric morbidity and mortality? An observational study of vitamin D in a cohort of 52 postmortem examinations. Pediatr Dev Pathol. 2014;17:455–64.

    Article  PubMed  Google Scholar 

  18. Anderson PH, Lam NN, Turner AG, Davey RA, Kogawa M, Atkins GJ, et al. The pleiotropic effects of vitamin D in bone. J Steroid Biochem Mol Biol. 2013;136:190–4.

    Article  CAS  PubMed  Google Scholar 

  19. Owen TA, Aronow MS, Barone LM, Bettencourt B, Stein GS, Lian JB. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology. 1991;128:1496–504.

    Article  CAS  PubMed  Google Scholar 

  20. Allard L, Demoncheaux N, Machuca-Gayet I, Georgess D, Coury-Lucas F, Jurdic P, et al. Biphasic effects of vitamin D and FGF23 on human osteoclast biology. Calcif Tissue Int. 2015;97:69–79.

    Article  CAS  PubMed  Google Scholar 

  21. Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heidbreder E, Naujoks H, Brosa U, Schramm L. The calcium-parathyroid hormone regulation in chronic renal failure investigation of its dynamic secretion pattern. Horm Metab Res. 1997;29:70–5.

    Article  CAS  PubMed  Google Scholar 

  23. Wesseling-Perry K, Pereira RC, Tseng CH, Elashoff R, Zaritsky JJ, Yadin O, et al. Early skeletal and biochemical alterations in pediatric chronic kidney disease. Clin J Am Soc Nephrol. 2012;7:146–52.

    Article  CAS  PubMed  Google Scholar 

  24. Harambat J, Cochat P. Growth after renal transplantation. Pediatr Nephrol. 2009;24:1297–306.

    Article  PubMed  Google Scholar 

  25. Sanchez CP, Salusky IB, Kuizon BD, Abdella P, Juppner H, Goodman WG. Growth of long bones in renal failure: roles of hyperparathyroidism, growth hormone and calcitriol. Kidney Int. 1998;54:1879–87.

    Article  CAS  PubMed  Google Scholar 

  26. Kuizon BD, Goodman WG, Juppner H, Boechat I, Nelson P, Gales B, et al. Diminished linear growth during intermittent calcitriol therapy in children undergoing CCPD. Kidney Int. 1998;53:205–11.

    Article  CAS  PubMed  Google Scholar 

  27. Wesseling-Perry K, Pereira RC, Sahney S, Gales B, Wang HJ, Elashoff R, et al. Calcitriol and doxercalciferol are equivalent in controlling bone turnover, suppressing parathyroid hormone, and increasing fibroblast growth factor-23 in secondary hyperparathyroidism. Kidney Int. 2011;79:112–9.

    Article  CAS  PubMed  Google Scholar 

  28. Groothoff JW, Offringa M, Van Eck-Smit BL, Gruppen MP, Van De Kar NJ, Wolff ED, et al. Severe bone disease and low bone mineral density after juvenile renal failure. Kidney Int. 2003;63:266–75.

    Article  PubMed  Google Scholar 

  29. Denburg MR, Kumar J, Jemielita T, Brooks ER, Skversky A, Portale AA, et al. Fracture burden and risk factors in childhood CKD: results from the CKiD cohort study. J Am Soc Nephrol. 2015;10:571–7.

    Google Scholar 

  30. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342(20):1478–83.

    Article  CAS  PubMed  Google Scholar 

  31. Hernandez JD, Wesseling K, Pereira R, Gales B, Harrison R, Salusky IB. Technical approach to iliac crest biopsy. Clin J Am Soc Nephrol. 2008;3:S164–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69:1945–53.

    Article  CAS  PubMed  Google Scholar 

  33. Bakkaloglu SA, Wesseling-Perry K, Pereira RC, Gales B, Wang HJ, Elashoff RM, et al. Value of the new bone classification system in pediatric renal osteodystrophy. Clin J Am Soc Nephrol. 2010;5:1860–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bacchetta J, Wesseling-Perry K, Kuizon B, Pereira RC, Gales B, Wang HJ, et al. The skeletal consequences of growth hormone therapy in dialyzed children: a randomized trial. Clin J Am Soc Nephrol. 2013;8:824–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pereira RC, Juppner H, Gales B, Salusky IB, Wesseling-Perry K. Osteocytic protein expression response to doxercalciferol therapy in pediatric dialysis patients. PLoS One. 2015;10(3):e0120856.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bacchetta J, Salusky IB. Evaluation of hypophosphatemia: lessons from patients with genetic disorders. Am J Kidney Dis. 2012;59:152–9.

    Article  CAS  PubMed  Google Scholar 

  37. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bacchetta J, Sea JL, Chun RF, Lisse TS, Wesseling-Perry K, Gales B, et al. Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin D in human monocytes. J Bone Miner Res. 2013;28:46–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO. 2014;33:229–46.

    CAS  Google Scholar 

  40. Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO. 2014;6:744–59.

    CAS  Google Scholar 

  41. Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A. 2011;108(46):E1146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359:584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007;18:2600–8.

    Article  CAS  PubMed  Google Scholar 

  44. Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chonchol M, Greene T, Zhang Y, Hoofnagle AN, Cheung AK. Low vitamin D and high fibroblast growth factor 23 serum levels associate with infectious and cardiac deaths in the HEMO study. J Am Soc Nephrol. 2016;27:227–37.

    Google Scholar 

  46. Pereira RC, Juppner H, Azucena-Serrano CE, Yadin O, Salusky IB, Wesseling-Perry K. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone. 2009;45:1161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khouzam NM, Wesseling-Perry K, Salusky IB. The role of bone in CKD-mediated mineral and vascular disease. Pediatr Nephrol. 2015;30:1379–88.

    Article  PubMed  Google Scholar 

  48. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012;122:2543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bellasi A, Reiner M, Petavy F, Goodman W, Floege J, Raggi P. Presence of valvular calcification predicts the response to cinacalcet: data from the ADVANCE study. J Heart Valve Dis. 2013;22:391–9.

    PubMed  Google Scholar 

  50. Investigators ET, Chertow GM, Block GA, Correa-Rotter R, Drueke TB, Floege J, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367:2482–94.

    Article  Google Scholar 

  51. Kubo Y, Sterling LR, Parfrey PS, Gill K, Mahaffey KW, Gioni I, et al. Assessing the treatment effect in a randomized controlled trial with extensive non-adherence: the EVOLVE trial. Pharm Stat. 2015;14:242–51.

    Article  PubMed  Google Scholar 

  52. Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation. 2015;132:27–39.

    Article  CAS  PubMed  Google Scholar 

  53. Isakova T, Ix JH, Sprague SM, Raphael KL, Fried L, Gassman JJ, et al. Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J Am Soc Nephrol. 2015;26:2328–39.

    Article  CAS  PubMed  Google Scholar 

  54. Olauson H, Vervloet MG, Cozzolino M, Massy ZA, Urena Torres P, Larsson TE. New insights into the FGF23-Klotho axis. Semin Nephrol. 2014;34:586–97.

    Article  CAS  PubMed  Google Scholar 

  55. Fu H, Liu Y. Loss of Klotho in CKD breaks one’s heart. J Am Soc Nephrol. 2015;26:2305–7.

    Article  CAS  PubMed  Google Scholar 

  56. Xie J, Yoon J, An SW, Kuro-o M, Huang CL. Soluble Klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J Am Soc Nephrol. 2015;26:1150–60.

    Article  CAS  PubMed  Google Scholar 

  57. Yang K, Wang C, Nie L, Zhao X, Gu J, Guan X, et al. Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J Am Soc Nephrol. 2015;26:2434–46.

    Article  CAS  PubMed  Google Scholar 

  58. Ritter CS, Brown AJ. Direct suppression of Pth gene expression by the vitamin D prohormones doxercalciferol and calcidiol requires the vitamin D receptor. J Mol Endocrinol. 2011;46:63–6.

    CAS  PubMed  Google Scholar 

  59. Klaus G, Watson A, Edefonti A, Fischbach M, Ronnholm K, Schaefer F, et al. Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol. 2006;21:151–9.

    Article  CAS  PubMed  Google Scholar 

  60. Haffner D, Schaefer F. Searching the optimal PTH target range in children undergoing peritoneal dialysis: new insights from international cohort studies. Pediatr Nephrol. 2013;28:537–45.

    Article  PubMed  Google Scholar 

  61. Geary DF, Hodson EM, Craig JC. Interventions for bone disease in children with chronic kidney disease. Cochrane. 2010;(1):CD008327.

    Google Scholar 

  62. Bacchetta J, Plotton I, Ranchin B, Vial T, Nicolino M, Morel Y, et al. Precocious puberty and unlicensed paediatric drugs for severe hyperparathyroidism. Nephrol Dial Transplant. 2009;24:2595–8.

    Article  CAS  PubMed  Google Scholar 

  63. Silverstein DM, Kher KK, Moudgil A, Khurana M, Wilcox J, Moylan K. Cinacalcet is efficacious in pediatric dialysis patients. Pediatr Nephrol. 2008;23:1817–22.

    Article  PubMed  Google Scholar 

  64. Platt C, Inward C, McGraw M, Dudley J, Tizard J, Burren C, et al. Middle-term use of Cinacalcet in paediatric dialysis patients. Pediatr Nephrol. 2010;25:143–8.

    Article  PubMed  Google Scholar 

  65. Bacchetta J, Ranchin B, Demede D, Allard L. The consequences of pediatric renal transplantation on bone metabolism and growth. Curr Opin Organ Transplant. 2013;18:555–62.

    Article  CAS  PubMed  Google Scholar 

  66. Ebbert K, Chow J, Krempien J, Matsuda-Abedini M, Dionne J. Vitamin D insufficiency and deficiency in pediatric renal transplant recipients. Pediatr Transplant. 2015;19:492–8.

    Article  CAS  PubMed  Google Scholar 

  67. Lisse TS, Liu T, Irmler M, Beckers J, Chen H, Adams JS, et al. Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling. FASEB. 2011;25:937–47.

    Article  CAS  Google Scholar 

  68. Ducloux D, Courivaud C, Bamoulid J, Kazory A, Dumoulin G, Chalopin JM. Pretransplant serum vitamin D levels and risk of cancer after renal transplantation. Transplantation. 2008;85:1755–9.

    Article  CAS  PubMed  Google Scholar 

  69. Falkiewicz K, Boratynska M, Speichert-Bidzinska B, Magott-Procelewska M, Biecek P, Patrzalek D, et al. 1,25-dihydroxyvitamin D deficiency predicts poorer outcome after renal transplantation. Transplant Proc. 2009;41:3002–5.

    Article  CAS  PubMed  Google Scholar 

  70. Shroff R, Aitkenhead H, Costa N, Trivelli A, Litwin M, Picca S, et al. Normal 25-hydroxyvitamin D levels are associated with less proteinuria and attenuate renal failure progression in children with CKD. J Am Soc Nephrol. 2016;27:314–22.

    Google Scholar 

Download references

Disclosure of Interest

JB: research grants from Amgen, Sandoz, Novartis and Crinex; consulting fees from Amgen, Genzyme, Otsuka and Pfizer.

IBS: Amgen, OPKO, Abbvie and Sanofi

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justine Bacchetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bacchetta, J., Salusky, I.B. (2016). Vitamin D in Children with Chronic Kidney Disease: A Focus on Longitudinal Bone Growth. In: Ureña Torres, P., Cozzolino, M., Vervloet, M. (eds) Vitamin D in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-32507-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32507-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32505-7

  • Online ISBN: 978-3-319-32507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics