Decoupling Between Structural and Conductivity Relaxation in Aprotic Ionic Liquids

  • Evgeni Shoifet
  • Sergey P. Verevkin
  • Christoph SchickEmail author
Part of the Advances in Dielectrics book series (ADVDIELECT)


For the [CnMIm][NTf2] ionic liquids with n = 4, 6, and 8 the dynamic calorimetric glass transition temperature T g,dyn was determined in a wide frequency range from 10−2 to 105 rad s−1. The calorimetric glass transition temperature or vitrification temperature T g from standard DSC with 10 K min−1 cooling rate was determined too. The obtained value for T g in these ionic liquids is in very good agreement with the calorimetric T g,dyn at 100 s relaxation time. The obtained calorimetric data are compared to conductivity and other relaxation data available in the literature. In a relaxation map at short relaxation times (τ < 1 µs), conductivity relaxation and calorimetric relaxation show a similar behavior. However, at low frequencies a significant decoupling between conductivity and calorimetric data is observed. Similar to other ionic conductors, the conductivity relaxation has a weaker temperature dependency than structural relaxation. Interestingly, there is no break in the conductivity data when crossing T g. This is different from many other systems.


Ionic Liquid Room Temperature Ionic Liquid Calorimetric Data Conductivity Relaxation Vitrification Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge M. Ahrenberg for the measurements with the vacuum AC calorimeter.


  1. 1.
    Angell CA (1964) Free volume model for transport in fused salts: electrical conductance in glass-forming nitrate melts. J Phys Chem 68(7):1917–1929. doi: 10.1021/j100789a042 CrossRefGoogle Scholar
  2. 2.
    Moynihan CT, Balitactac N, Boone L, Litovitz TA (1971) Comparison of shear and conductivity relaxation times for concentrated lithium chloride solutions. J Chem Phys 55(6):3013–3019. doi: 10.1063/1.1676531 CrossRefGoogle Scholar
  3. 3.
    Rekhson SM, Mazurin OV (1974) Stress and structural relaxation in Na2O–CaO–SiO2 glass. J Amer Ceramic Soc 57(7):327–328Google Scholar
  4. 4.
    Stickel F, Fischer EW, Richert R (1996) Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data. J Chem Phys 104(5):2043–2055CrossRefGoogle Scholar
  5. 5.
    Fujara F, Geil B, Sillescu H, Fleischer G (1992) Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Z Physik B 88:195–204CrossRefGoogle Scholar
  6. 6.
    Cicerone MT, Ediger MD (1996) Enhanced translation of probe molecules in supercooled O-terphenyl—Signature of spatially heterogeneous dynamic. J Chem Phys 104(18):7210–7218CrossRefGoogle Scholar
  7. 7.
    Hansen C, Stickel F, Berger T, Richert R, Fischer EW (1997) Dynamics of glass-forming liquids. III. Comparing the dielectric α- and β-relaxation of 1-propanol and o-terphenyl. J Chem Phys 107(4):1086–1093CrossRefGoogle Scholar
  8. 8.
    Murthy SSN, Tyagi M (2002) Experimental study of the high frequency relaxation process in monohydroxy alcohols. J Chem Phys 117(8):3837–3847. doi: 10.1063/1.1494428 CrossRefGoogle Scholar
  9. 9.
    Schonhals A, Schlosser E (1993) Relationship between segmental and chain dynamics in polymer melts as studied by dielectric-spectroscopy. Phys Scr T49A:233–236CrossRefGoogle Scholar
  10. 10.
    Schonhals A (1993) Relation between main and normal mode relaxations for polyisoprene studied by dielectric spectroscopy. Macromolecules 26(6):1309–1312CrossRefGoogle Scholar
  11. 11.
    Rozanski SA, Stannarius R, Groothues H, Kremer F (1996) Dielectric properties of the nematic liquid crystal 4-N-pentyl-4′-cyanobiphenyl in porous membranes. Liq Cryst 20(1):59–66CrossRefGoogle Scholar
  12. 12.
    Litovitz TA, McDuffie GE (1963) Comparison of dielectric and mechanical relaxation in associated liquids. J Chem Phys 39(3):729–734. doi: 10.1063/1.1734316 CrossRefGoogle Scholar
  13. 13.
    Jakobsen B, Hecksher T, Christensen T, Olsen NB, Dyre JC, Niss K (2012) Communication: Identical temperature dependence of the time scales of several linear-response functions of two glass-forming liquids. J Chem Phys 136(8):081102–081104CrossRefGoogle Scholar
  14. 14.
    Shoifet E, Schulz G, Schick C (2015) Temperature modulated differential scanning calorimetry–extension to high and low frequencies. Thermochim Acta 603:227–236. doi: 10.1016/j.tca.2014.10.010 CrossRefGoogle Scholar
  15. 15.
    Wang LM, Richert R (2005) Debye type dielectric relaxation and the glass transition of alcohols. J Phys Chem B Lett 109:11091–11094CrossRefGoogle Scholar
  16. 16.
    Schick C, Sukhorukov D, Schönhals A (2001) Comparison of the molecular dynamics of a liquid crystalline side group polymer revealed from temperature modulated DSC and dielectric experiments in the glass transition region. Macromol Chem Phys 202(8):1398–1404CrossRefGoogle Scholar
  17. 17.
    Brás AR, Dionísio M, Huth H, Schick C, Schönhals A (2007) Origin of glassy dynamics in a liquid crystal studied by broadband dielectric and specific heat spectroscopy. Phys Rev E 75:061708CrossRefGoogle Scholar
  18. 18.
    Krause C, Yin H, Cerclier C, Morineau D, Wurm A, Schick C, Emmerling F, Schonhals A (2012) Molecular dynamics of a discotic liquid crystal investigated by a combination of dielectric relaxation and specific heat spectroscopy. Soft Matter 8:11115–11122. doi: 10.1039/c2sm25610j CrossRefGoogle Scholar
  19. 19.
    Wojnarowska Z, Paluch KJ, Shoifet E, Schick C, Tajber L, Knapik J, Wlodarczyk P, Grzybowska K, Hensel-Bielowka S, Verevkin SP, Paluch M (2015) Molecular origin of enhanced proton conductivity in anhydrous ionic systems. J Am Chem Soc 137(3):1157–1164. doi: 10.1021/ja5103458 CrossRefGoogle Scholar
  20. 20.
    Wojnarowska Z, Knapik J, Jacquemin J, Berdzinski S, Strehmel V, Sangoro JR, Paluch M (2015) Effect of pressure on decoupling of ionic conductivity from segmental dynamics in polymerized ionic liquids. Macromolecules 48(23):8660–8666. doi: 10.1021/acs.macromol.5b02130 CrossRefGoogle Scholar
  21. 21.
    Hensel A, Schick C (1998) Relation between freezing-in due to linear cooling and the dynamic glass transition temperature by temperature-modulated DSC. J Non-Crystal Solids 235–237:510–516CrossRefGoogle Scholar
  22. 22.
    Angell CA (1995) Formation of glasses from liquids and biopolymers (Review). Science 267(5206):1924–1935CrossRefGoogle Scholar
  23. 23.
    Scopigno T, Ruocco G, Sette F, Monaco G (2003) Is the fragility of a liquid embedded in the properties of its glass? Science 302(5646):849–852. doi: 10.1126/science.1089446 CrossRefGoogle Scholar
  24. 24.
    Lamb J (1978) Viscoelasticity and lubrication: a review of liquid properties. J Rheol 22(4):317–347. doi: 10.1122/1.549482 CrossRefGoogle Scholar
  25. 25.
    Dyre JC (2006) The glass transition and elastic models of glass-forming liquids. Rev Mod Phys 78:953–972. doi: 10.1103/RevModPhys.78.953
  26. 26.
    Griffin PJ, Holt AP, Wang Y, Novikov VN, Sangoro JR, Kremer F, Sokolov AP (2014) Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 118(3):783–790. doi: 10.1021/jp412365n CrossRefGoogle Scholar
  27. 27.
    Iacob C, Sangoro JR, Serghei A, Naumov S, Korth Y, Kärger J, Friedrich C, Kremer F (2008) Charge transport and glassy dynamics in imidazole-based liquids. J Chem Phys 129(23):234511. doi: 10.1063/1.3040278 CrossRefGoogle Scholar
  28. 28.
    Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78(6):639–648. doi: 10.1021/j100599a016 CrossRefGoogle Scholar
  29. 29.
    Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glassforming liquids and amorphous solids. J Appl Phys 88(6):3113–3157. doi: 10.1063/1.1286035 CrossRefGoogle Scholar
  30. 30.
    Bailey NP, Christensen T, Jakobsen B, Niss K, Olsen NB, Pedersen UR, Schrøder TB, Dyre JC (2008) Glass-forming liquids: one or more ‘order’ parameters? J Phys: Condens Matter 20(24):244113. doi: 10.1088/0953-8984/20/24/244113 Google Scholar
  31. 31.
    Moynihan CT et al (1976) Structural relaxation in vitreous materials. Ann NY Acad Sci 279:15–35CrossRefGoogle Scholar
  32. 32.
    Hecksher T, Olsen NB, Nelson KA, Dyre JC, Christensen T (2013) Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers. J Chem Phys 138(12):12A543-512CrossRefGoogle Scholar
  33. 33.
    Russina O, Beiner M, Pappas C, Russina M, Arrighi V, Unruh T, Mullan CL, Hardacre C, Triolo A (2009) Temperature dependence of the primary relaxation in 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide. J Phys Chem B 113(25):8469–8474. doi: 10.1021/jp900142m CrossRefGoogle Scholar
  34. 34.
    Sangoro JR, Iacob C, Naumov S, Valiullin R, Rexhausen H, Hunger J, Buchner R, Strehmel V, Karger J, Kremer F (2011) Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7(5):1678–1681CrossRefGoogle Scholar
  35. 35.
    Kwon H-J, Seo J-A, Iwahashi T, Ouchi Y, Kim D, Kim HK, Hwang Y-H (2013) Study of alkyl chain length dependent characteristics of imidazolium based ionic liquids [CnMIM]+[TFSA] by Brillouin and dielectric loss spectroscopy. Curr Appl Phys 13(1):271–279. doi: 10.1016/j.cap.2012.07.023 CrossRefGoogle Scholar
  36. 36.
    Leys J, Wubbenhorst M, Menon CP, Rajesh R, Thoen J, Glorieux C, Nockemann P, Thijs B, Binnemans K, Longuemart S (2008) Temperature dependence of the electrical conductivity of imidazolium ionic liquids. J Chem Phys 128(6):064509CrossRefGoogle Scholar
  37. 37.
    Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109(13):6103–6110. doi: 10.1021/jp044626d CrossRefGoogle Scholar
  38. 38.
    Widegren JA, Magee JW (2007) Density, viscosity, speed of sound, and electrolytic conductivity for the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its mixtures with water. J Chem Eng Data 52(6):2331–2338. doi: 10.1021/je700329a CrossRefGoogle Scholar
  39. 39.
    Angell CA (1991) Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems. J Non-Crystal Solids 131(1):13–31CrossRefGoogle Scholar
  40. 40.
    Bohmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99(5):4201–4209CrossRefGoogle Scholar
  41. 41.
    Sergei V, Dzyuba RAB (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. ChemPhysChem 3(2):161–166. doi: 10.1002/1439-7641(20020215)3:2<161:AID-CPHC161>3.0.CO;2-3 CrossRefGoogle Scholar
  42. 42.
    Andanson JM, Meng X, Traïkia M, Husson P (2016) Quantification of the impact of water as an impurity on standard physico-chemical properties of ionic liquids. J Chem Thermodyn 94:169–176. doi: 10.1016/j.jct.2015.11.008 CrossRefGoogle Scholar
  43. 43.
    Chan RK, Pathmanathan K, Johari GP (1986) Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures. J Phys Chem 90:6358–6362CrossRefGoogle Scholar
  44. 44.
    Gobrecht H, Hamann K, Willers G (1971) Complex plane analysis of heat capacity of polymers in the glass transition region. J Phys E: Sci Instruments 4:21–23CrossRefGoogle Scholar
  45. 45.
    Corbino OM (1911) Periodische Widerstandsänderungen feiner Metallfäden, die durch Wechselströme zum Glühen gebracht werden, sowie Ableitung ihrer thermischen Eigenschaften bei hoher Temperatur. Physik Zeitschr XII:292–295Google Scholar
  46. 46.
    Corbino OM (1910) Thermische Oszillationen wechselstromdurchflossener Lampen mit dünnem Faden und daraus sich ergebende Anwesenheit geradzahliger Oberschwingungen. Physik Zeitschr XI:413–417Google Scholar
  47. 47.
    Birge NO, Nagel SR (1987) Wide-frequency specific heat spectrometer. Rev Sci Instrum 58(8):1464–1470CrossRefGoogle Scholar
  48. 48.
    Birge NO, Nagel SR (1985) Specific-heat spectroscopy of the glass transition. Phys Rev Lett 54(25):2674–2677CrossRefGoogle Scholar
  49. 49.
    Christensen T (1985) The frequency dependence of the specific heat at the glass transition. J Phys (Paris) 46(12):C8-635–C638-637Google Scholar
  50. 50.
    Christensen T, Olsen NB (1997) How to compare the frequency-dependent adiabatic compressibility with other thermoviscoelastic response functions at the glass-transition. Prog Theor Phys Suppl 126:273–276CrossRefGoogle Scholar
  51. 51.
    Christensen T, Olsen NB, Dyre JC (2007) Conventional methods fail to measure c[sub p](omega) of glass-forming liquids. Phys Rev E (Stat Nonlinear Soft Matter Phys) 75(4):041502–041511Google Scholar
  52. 52.
    Christensen T, Olsen NB, Dyre JC (2008) Can the frequency dependent isobaric specific heat be measured by thermal effusion methods? In: AIP conference proceedings, pp 139–141Google Scholar
  53. 53.
    Igarashi B, Christensen T, Larsen EH, Olsen NB, Pedersen IH, Rasmussen T, Dyre JC (2008) A cryostat and temperature control system optimized for measuring relaxations of glass-forming liquids. Rev Sci Instr 79(4):045105–045113CrossRefGoogle Scholar
  54. 54.
    Roed LA, Niss K, Jakobsen B (2015) Communication: high pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid. J Chem Phys 143(22):221101. doi: 10.1063/1.4936867 CrossRefGoogle Scholar
  55. 55.
    Christensen T, Jakobsen B, Papini J, Hecksher T, Dyre JC, Olsen NB (2011) A combined measurement of thermal and mechanical relaxation. J Non-Crystal Solids 357(2):346–350. doi: 10.1016/j.jnoncrysol.2010.07.051 CrossRefGoogle Scholar
  56. 56.
    Jakobsen B, Olsen NB, Christensen T (2010) Frequency-dependent specific heat from thermal effusion in spherical geometry. Phys Rev E 81(6):061505CrossRefGoogle Scholar
  57. 57.
    Cammenga HK, Eysel W, Gmelin E, Hemminger W, Hohne GWH, Sarge SM (1993) The temperature calibration of scanning calorimeters: Part 2. Calibration substances. Thermochim Acta 219:333–342CrossRefGoogle Scholar
  58. 58.
    Hohne GWH, Cammenga HK, Eysel W, Gmelin E, Hemminger W (1990) The temperature calibration of scanning calorimeters. Thermochim Acta 160(1):1–12CrossRefGoogle Scholar
  59. 59.
    Sarge SM, Gmelin E, Hohne GWH, Cammenga HK, Hemminger W, Eysel W (1994) The caloric calibration of scanning calorimeters. Thermochim Acta 247(2):129–168CrossRefGoogle Scholar
  60. 60.
    Sarge SM, Hemminger W, Gmelin E, Hohne GWH, Cammenga HK, Eysel W (1997) Metrologically based procedures for the temperature, heat and heat flow rate calibration of DSC. J Therm Anal 49:1125–1134CrossRefGoogle Scholar
  61. 61.
    Hensel A, Schick C (1997) Temperature calibration of temperature-modulated differential scanning calorimeters. Thermochim Acta 305:229–237CrossRefGoogle Scholar
  62. 62.
    Schick C, Jonsson U, Vassilev T, Minakov A, Schawe J, Scherrenberg R, Lörinczy D (2000) Applicability of 8OCB for temperature calibration of temperature modulated calorimeters. Thermochim Acta 347:53–61CrossRefGoogle Scholar
  63. 63.
    Neuenfeld S, Schick C (2006) Verifying the symmetry of differential scanning calorimeters concerning heating and cooling using liquid crystal secondary temperature standards. Thermochim Acta 446(1–2):55–65CrossRefGoogle Scholar
  64. 64.
    Merzlyakov M, Schick C (2001) Simultaneous multi-frequency TMDSC measurements. Thermochim Acta 377(1–2):193–204CrossRefGoogle Scholar
  65. 65.
    Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC Part 1. Influence of non-linear thermal response. Thermochim Acta 330:55–64CrossRefGoogle Scholar
  66. 66.
    Hensel A, Merzlyakov M, Schick C (1998) Nonlinear response in TMDSC. DPG FrühjahrstagungGoogle Scholar
  67. 67.
    Merzlyakov M, Schick C (2001) Step response analysis in DSC—A fast way to generate heat capacity spectra. Thermochim Acta 380(1):5–12CrossRefGoogle Scholar
  68. 68.
    Merzlyakov M, Hohne GWH, Schick C (2002) Calibration of magnitude and phase agle of a TMDSC signal Part 2: calibration practice. Thermochim Acta 391(1–2):69–80. doi: 10.1016/S0040-6031(02)00164-8 CrossRefGoogle Scholar
  69. 69.
    Hohne GWH, Merzlyakov M, Schick C (2002) Calibration of magnitude and phase angle of a TMDSC signal Part 1: basic considerations. Thermochim Acta 391(1–2):51–67CrossRefGoogle Scholar
  70. 70.
    Merzlyakov M, Schick C (1999) Complex heat capacity measurements by TMDSC Part 2: algorithm for amplitude and phase angle correction. Thermochim Acta 330:65–73CrossRefGoogle Scholar
  71. 71.
    Weyer S, Hensel A, Schick C (1997) Phase angle correction for TMDSC in the glass-transition region. Thermochim Acta 305:267–275. doi: 10.1016/S0040-6031(97)00180-9 CrossRefGoogle Scholar
  72. 72.
    Huth H, Minakov AA, Serghei A, Kremer F, Schick C (2007) Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur Phys J Spec Top 141(1):153–160CrossRefGoogle Scholar
  73. 73.
    Huth H, Minakov AA, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci B Polym Phys 44:2996–3005CrossRefGoogle Scholar
  74. 74.
    Huth H, Minakov A, Schick C (2005) High sensitive differential AC-chip calorimeter for nanogram samples. Netsu Sokutei 32(2):70–76Google Scholar
  75. 75.
    Shoifet E, Chua YZ, Huth H, Schick C (2013) High frequency alternating current chip nano calorimeter with laser heating. Rev Sci Instr 84(7):073903–073912. doi: 10.1063/1.4812349 CrossRefGoogle Scholar
  76. 76.
    Ahrenberg M, Shoifet E, Whitaker KR, Huth H, Ediger MD, Schick C (2012) Differential alternating current chip calorimeter for in situ investigation of vapor-deposited thin films. Rev Sci Instr 83(3):033902–033912CrossRefGoogle Scholar
  77. 77.
    Kraftmakher Y (2004) Modulation calorimetry, vol XII. In: Theory and applications. Springer, BerlinGoogle Scholar
  78. 78.
    Sullivan P, Seidel G (1967) AC temperature measurement of changes in heat capacity of beryllium in a magnetic field. Phys Lett 25A(3):229–230Google Scholar
  79. 79.
    Paulechka YU, Blokhin AV, Kabo GJ, Strechan AA (2007) Thermodynamic properties and polymorphism of 1-alkyl-3-methylimidazolium bis(triflamides). J Chem Thermodyn 39(6):866–877. doi: 10.1016/j.jct.2006.11.006 CrossRefGoogle Scholar
  80. 80.
    Verevkin SP, Zaitsau DH, Emel’yanenko VN, Ralys RV, Yermalayeu AV, Schick C (2013) Does alkyl chain length really matter? Structure-property relationships in thermochemistry of ionic liquids. Thermochim Acta 562:84–95. doi:
  81. 81.
    Rivera A, Rössler EA (2006) Evidence of secondary relaxations in the dielectric spectra of ionic liquids. Phys Rev B 73(21):212201CrossRefGoogle Scholar
  82. 82.
    Griffin P, Agapov AL, Kisliuk A, Sun X-G, Dai S, Novikov VN, Sokolov AP (2011) Decoupling charge transport from the structural dynamics in room temperature ionic liquids. J Chem Phys 135(11):114509. doi: 10.1063/1.3638269 CrossRefGoogle Scholar
  83. 83.
    Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108(42):16593–16600. doi: 10.1021/jp047480r CrossRefGoogle Scholar
  84. 84.
    Bulut S, Eiden P, Beichel W, Slattery JM, Beyersdorff TF, Schubert TJS, Krossing I (2011) Temperature dependence of the viscosity and conductivity of mildly functionalized and non-functionalized [Tf2N] ionic liquids. ChemPhysChem 12(12):2296–2310. doi: 10.1002/cphc.201100214 CrossRefGoogle Scholar
  85. 85.
    Hempel E, Huth H, Beiner M (2003) Interrelation between side chain crystallization and dynamic glass transitions in higher poly(n-alkyl methacrylates). Thermochim Acta 403(1):105–114CrossRefGoogle Scholar
  86. 86.
    Donth E (1992) Relaxation and thermodynamics in polymers, glass transition. Akademie, BerlinGoogle Scholar
  87. 87.
    Angell CA (1968) Oxide glasses in light of the “Ideal Glass” concept: I, ideal and nonideal transitions, and departures from ideality. J Am Ceram Soc 51(3):117–124. doi: 10.1111/j.1151-2916.1968.tb11854.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Evgeni Shoifet
    • 1
    • 2
  • Sergey P. Verevkin
    • 2
    • 3
  • Christoph Schick
    • 1
    • 2
    Email author
  1. 1.Institute of PhysicsUniversity of RostockRostockGermany
  2. 2.Department Life Light and MatterCompetence Center CALORRostockGermany
  3. 3.Institute of Physical ChemistryUniversity of RostockRostockGermany

Personalised recommendations