Abstract
Surface water storage and fluxes in rivers, lakes, reservoirs and wetlands are currently poorly observed at the global scale, even though they represent major components of the water cycle and deeply impact human societies. In situ networks are heterogeneously distributed in space, and many river basins and most lakes—especially in the developing world and in sparsely populated regions—remain unmonitored. Satellite remote sensing has provided useful complementary observations, but no past or current satellite mission has yet been specifically designed to observe, at the global scale, surface water storage change and fluxes. This is the purpose of the planned Surface Water and Ocean Topography (SWOT) satellite mission. SWOT is a collaboration between the (US) National Aeronautics and Space Administration, Centre National d’Études Spatiales (the French Spatial Agency), the Canadian Space Agency and the United Kingdom Space Agency, with launch planned in late 2020. SWOT is both a continental hydrology and oceanography mission. However, only the hydrology capabilities of SWOT are discussed here. After a description of the SWOT mission requirements and measurement capabilities, we review the SWOT-related studies concerning land hydrology published to date. Beginning in 2007, studies demonstrated the benefits of SWOT data for river hydrology, both through discharge estimation directly from SWOT measurements and through assimilation of SWOT data into hydrodynamic and hydrology models. A smaller number of studies have also addressed methods for computation of lake and reservoir storage change or have quantified improvements expected from SWOT compared with current knowledge of lake water storage variability. We also briefly review other land hydrology capabilities of SWOT, including those related to transboundary river basins, human water withdrawals and wetland environments. Finally, we discuss additional studies needed before and after the launch of the mission, along with perspectives on a potential successor to SWOT.
Keywords
- Surface Water and Ocean Topography (SWOT) satellite mission
- Continental surface waters
- Lakes
- Reservoirs
- Rivers
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Allen GF, Pavelsky TM (2015) Patterns of river width and surface area revealed by satellite-derived North American River Width data set. Geophys Res Lett 42(2):295–402. doi:10.1002/2014GL062764
Alsdorf DE, Lettenmaier DP (2003) Tracking fresh water from space. Science 301:1485–1488
Alsdorf DE, Lettenmaier DP, Vörösmarty C (2003) The need for global, satellite-based observations of terrestrial surface waters. EOS Trans Am Geophys Union 84(29):269–276. doi:10.1029/2003EO290001
Alsdorf DE, Rodríguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(2):RG2002. doi:10.1029/2006RG000197
Andreadis KM, Schumann GJP (2014) Estimating the impact of satellite observations on the predictability of large-scale hydraulic models. Adv Water Resour 73:44–54. doi:10.1016/j.advwatres.2014.06.006
Andreadis KM, Clark EA, Lettenmaier DP, Alsdorf DE (2007) Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys Res Lett 34:L10403
Arsen A, Crétaux JF, Berge-Nguyen M (2014) Remote sensing-derived bathymetry of lake Poopo. Remote Sens 6(1):407–420. doi:10.3390/rs6010407
Bates PD, Neal JC, Alsdorf DE, Schumann GJP (2014) Observing global surface water flood dynamics. Surv Geophys 35(3):839–852. doi:10.1007/s10712-013-9269-4
Baup F, Frappart F, Maubant J (2014) Combining high-resolution satellite images and altimetry to estimate the volume of small lakes. Hydrol Earth Syst Sci 18:2007–2020. doi:10.5194/hess-18-2007-2014
Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36. doi:10.1016/j.jhydrol.2005.07.007
Biancamaria S, Andreadis KM, Durand MT, Clark EA, Rodriguez E, Mognard NM, Alsdorf DE, Lettenmaier DP, Oudin Y (2010) Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE J Sel Top Appl Earth Obs Remote Sens 3(1):6–19. doi:10.1109/JSTARS.2009.2034614
Biancamaria S, Durand MT, Andreadis K, Bates PD, Boone A, Mognard NM, Rodriguez E, Alsdorf DE, Lettenmaier DP, Clark EA (2011) Assimilation of virtual wide swath altimetry to improve Arctic river modelling. Remote Sens Environ 115(2):373–381. doi:10.1016/j.rse.2010.09.008
Biancamaria S, Andreadis K, Ricci S (2014) Using images of continental water surface elevations from upcoming satellite mission. EOS Trans Am Geophys Union 95(12):105. doi:10.1002/2014EO120004
Bierkens MFP, Bell VA, Burek P, Chaney N, Condon LE, David CH, de Roo A, Döll P, Drost N, Famiglietti JS, Flörke M, Gochis DJ, Houser P, Hut R, Keune J, Kollet S, Maxwell RM, Reager JT, Samaniego L, Sudicky E, Sutanudjaja EH, van de Giesen N, Winsemius H, Wood EF (2015) Hyper-resolution global hydrological modelling: what is next? Everywhere and locally relevant. Hydrol Process 29(2):310–320. doi:10.1002/hyp.10391
Bjerklie DM (2007) Estimating the bankfull velocity and discharge for rivers using remotely sensed river morphology information. J Hydrol 341(3–4):144–155. doi:10.1016/j.jhydrol.2007.04.011
Bjerklie DM, Dingman SL, Vörosmarty CJ, Bolster CH, Congalton R (2003) Evaluating the potential for measuring river discharge from space. J Hydrol 278(1):17–38. doi:10.1016/S0022-1694(03)00129-X
Bjerklie DM, Moller D, Smith LC, Dingman SL (2005) Estimating discharge in rivers using remotely sensed hydraulic information. J Hydrol 309(1–4):191–209. doi:10.1016/j.jhydrol.2004.11.022
Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling: a review. Hydrol Process 9(3–4):251–290. doi:10.1002/hyp.3360090305
Clark EA, Biancamaria S, Hossain F, Crétaux JF, Lettenmaier DP (2015) Current and future application for altimetry in trans-boundary river management. In: Benveniste J, Vignudelli S, Kostianov AG (eds) Inland water altimetry. Springer, Berlin. ISBN 978-3-642-22678-6 (should be published in 2015, accepted)
Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon-dioxide supersaturation in the surface waters of lakes. Science 265(5178):1568–1570. doi:10.1126/science.265.5178.1568
Crétaux JF, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Berge-Nguyen M, Gennero M-C, Abarca Del Rio R, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv Space Res 47(9):1497–1507. doi:10.1016/j.asr.2011.01.004
Crétaux JF, Biancamaria S, Arsen A, Bergé-Nguyen M, Becker M (2015) Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin. Environ Res Lett 10(1):015002. doi:10.1088/1748-9326/10/1/015002
Descroix L, Genthon P, Amogu O, Rajot JL, Sighomnou D, Vauclin M (2012) Change in Sahelian Rivers hydrograph: the case of the recent red floods of the Niger River in the Niamey region. Glob Planet Change 98–99:18–30. doi:10.1016/j.gloplacha.2012.07.009
Desjonquères JD, Carayon G, Steunou N, Lambin J (2010) Poseidon-3 radar altimeter: new modes and inflight performances. Mar Geod 33(S1):53–79. doi:10.1080/01490419.2010.488970
Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397. doi:10.4319/lo.2006.51.5.2388
Durand MT, Andreadis KM, Alsdorf DE, Lettenmaier DP, Moller D, Wilson M (2008) Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophys Res Lett 35:L20401. doi:10.1029/2008GL034150
Durand MT, Fu LL, Lettenmaier DP, Alsdorf DE, Rodríguez E, Esteban-Fernandez D (2010) The Surface Water and Ocean Topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc IEEE 98(5):766–779. doi:10.1109/JPROC.2010.2043031
Durand MT, Neal J, Rodríguez E, Andreadis K, Smith L, Yoon Y (2014) Estimating reach-averaged discharge for the River Severn from measurements of river water surface elevation and slope. J Hydrol 511:92–104. doi:10.1016/j.jhydrol.2013.12.050
Enjolras VM, Rodríguez E (2009) An assessment of a Ka-band radar interferometer mission accuracy over Eurasian Rivers. IEEE Trans Geosci Remote Sens 47(6):1752–1765. doi:10.1109/TGRS.2008.2006370
Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodríguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45(2):R2004. doi:10.1029/2005RG000183
Fjørtoft R, Gaudin JM, Pourthié N, Lalaurie JC, Mallet A, Nouvel JF, Martinot-Lagarde J, Oriot H, Borderies P, Ruiz C, Daniel S (2014) KaRIn on SWOT: characteristics of near-nadir Ka-band interferometric SAR imagery. IEEE Trans Geosci Remote Sens 52(4):2172–2185. doi:10.1109/TGRS.2013.2258402
Flipo N, Mouhri A, Labarthe B, Biancamaria S, Rivière A, Weill P (2014) Continental hydrosystem modelling: the concept of nested stream–aquifer interfaces. Hydrol Earth Syst Sci 18(8):3121–3149. doi:10.5194/hess18-3121-2014
Fu LL, Rodríguez E (2004) High-resolution measurement of ocean surface topography by radar interferometry for oceanographic and geophysical applications. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: frontiers and challenges in geophysics. Geophysical Monograph 150, AGU, Washington, pp 209–224
Fu LL, Alsdorf DE, Morrow R, Rodríguez E, Mognard NM (2012) SWOT: the Surface Water and Ocean Topography mission. JPL Publication 12-05. http://swot.jpl.nasa.gov/files/swot/SWOT_MSD_1202012.pdf. Accessed 20 Feb 2015
Gao H, Birkett C, Lettenmaier DP (2012) Global monitoring of large reservoir storage from satellite remote sensing. Water Resour Res 48(9):W09504. doi:10.1029/2012WR012063
Garambois PA, Monnier J (2015) Inference of effective river properties from remotely sensed observations of water surface. Adv Water Resour 79:103–120. doi:10.1016/j.advwatres.2015.02.007
García-Pintado J, Neal JC, Mason DC, Dance S, Bates PD (2013) Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling. J Hydrol 495:252–266. doi:10.1016/j.jhydrol.2013.03.050
García-Pintado J, Mason DC, Dance SL, Cloke HL, Neal JC, Freer J, Bates PD (2015) Satellite-supported flood forecasting in river networks: a real case study. J Hydrol 523:706–724. doi:10.1016/j.jhydrol.2015.01.084
Gleason CJ, Smith LC (2014) Toward global mapping of river discharge using satellite images and at-manystations hydraulic geometry. PNAS 111(13):4788–4791
Gleason CJ, Smith LC, Lee J (2014) Retrieval of river discharge solely from satellite imagery and at-manystations hydraulic geometry: sensitivity to river form and optimization parameters. Water Resour Res 50(12):9604–9619. doi:10.1002/2014WR016109
Kouraev AV, Zakharova EA, Samain O, Mognard NM, Cazenave A (2004) Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens Environ 93(1–2):238–245. doi:10.1016/j.rse.2004.07.007
Lee H, Durand MT, Jung HC, Alsdorf D, Shum CK, Sheng Y (2010) Characterization of surface water storage changes in Arctic lakes using simulated SWOT measurements. Int J Remote Sens 31(14):3931–3953. doi:10.1080/01431161.2010.483494
Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22. doi:10.1016/j.jhydrol.2004.03.028
Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. EOS Trans Am Geophys Union 89(10):93–94. doi:10.1029/2008EO100001
Lehner B, Reidy Liermann C, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, FrenkenK, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9(9):494–502. doi:10.1890/100125
Lettenmaier DP, Milly PCD (2009) Land waters and sea level. Nat Geosci 2(7):452–454. doi:10.1038/ngeo567
Moller D, Esteban-Fernandez D (2015) Near-nadir Ka-band field observations of fresh water bodies. In: Lakshmi V, Alsdorf D, Anderson M, Biancamaria S, Cosh M, Entin J, Huffman G, Kustas W, van Oevelen P, Painter T, Parajka J, Rodell M, Rüdiger C (eds) Remote sensing of the water cycle. AGU Geophysical Monograph, 206, Wiley, New York, pp 143–155
Munier S, Polebistki A, Brown C, Belaud G, Lettenmaier DP (2015) SWOT data assimilation for operational reservoir management on the upper Niger River Basin. Water Resour Res. doi:10.1002/2014WR016157
National Research Council (2007) Earth science and applications from space: national imperatives for the next decade and beyond. National Academies Press, Washington
Neal JC, Schumann GJP, Bates PD (2012) A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour Res 48:W11506. doi:10.1029/2012WR012514
Paiva RCD, Durand MT, Hossain F (2015) Spatiotemporal interpolation of discharge across a river network by using synthetic SWOT satellite data. Water Resour Res. doi:10.1002/2014WR015618
Papa F, Biancamaria S, Lion C, Rossow WB (2012) Uncertainties in mean river discharge estimates associated with satellite altimeters temporal sampling intervals: a case study for the annual peak flow in the context of the future SWOT hydrology mission. IEEE Geosci Remote Sens Lett 9(4):569–573. doi:10.1109/LGRS.2011.2174958
Pavelsky TM, Durand MT (2012) Developing new algorithms for estimating river discharge from space. EOS Trans Am Geophys Union 93(45):457. doi:10.1029/2012EO450006
Pavelsky TM, Durand MT, Andreadis KM, Beighley RE, Paiva RCD, Allen GH, Miller ZF (2014) Assessing the potential global extent of SWOT river discharge observations. J Hydrol 519:1516–1525. doi:10.1016/j.jhydrol.2014.08.044
Pedinotti V, Boone A, Ricci S, Biancamaria S, Mognard NM (2014) Assimilation of satellite data to optimize large-scale hydrological model parameters: a case study for the SWOT mission. Hydrol Earth Syst Sci 18(11):4485–4507. doi:10.5194/hess-18-4485-2014
Reichle RH, De Lannoy GJM, Forman BA, Drapper CS, Liu Q (2014) Connecting satellite observations with water cycle variables through land data assimilation: examples using the NASA GEOS-5 LDAS. Surv Geophys 35:577–606. doi:10.1007/s10712-013-9220-8
Rodríguez E (2015) Surface Water and Ocean Topography mission (SWOT), Science Requirements Document. JPL document D-61923. https://swot.jpl.nasa.gov/files/swot/SRD_021215.pdf. Accessed 20 Feb 2015
Rodríguez E, Moller D, Smith LC, Pavelsky TM, Alsdorf DE (2010) AirSWOT: an airborne monitoring platform for surface water monitoring. AGU Fall Meeting Abstract #H32D-06
Schumann GJP, Neal JC, Voisin N, Andreadis KM, Pappenberger F, Phanthuwongpakdee N, Hall AC, Bates PD (2013) A first large-scale flood inundation forecasting model. Water Resour Res 49(10):6248–6257. doi:10.1002/wrcr.20521
Schumann GJP, Bates PD, Neal JC, Andreadis KM (2014) Fight floods on a global scale. Nature 507(7491):169
Shiklomanov AI, Lammers RB (2009) Record Russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4(4):045015. doi:10.1088/1748-9326/4/4/045015
Skøien JO, Blöschl G, Western AW (2003) Characteristic space scales and timescales in hydrology. Water Resour Res 39(10):1304. doi:10.1029/2002WR001736
Smith LC (1997) Satellite remote sensing of river inundated area, stage, and discharge: a review. Hydrol Process 11:1427–1439
Smith LC, Pavelsky TM (2008) Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River, Siberia. Water Resour Res 44:W03427. doi:10.1029/2008GL033268
Smith LC, Pavelsky TM (2009) Remote sensing of volumetric storage change in lakes. Earth Surf Process Landf 34:1353–1358
Smith LC, Isacks BL, Forster RR, Bloom AL, Preuss I (1995) Estimation of discharge from braided glacial rivers using ERS-1 SAR: first results. Water Resour Res 31(5):1325–1329
Smith LC, Isacks BL, Bloom AL, Murray AB (1996) Estimation of discharge from three braided rivers using synthetic aperture radar (SAR) satellite imagery: potential application to ungaged basins. Water Resour Res 32(7):2021–2034
Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308(5727):1429. doi:10.1126/science.1108142
Steunou N, Desjonquères JD, Picot N, Sengenes P, Noubel J, Poisson JC (2015) AltiKa altimeter: instrument description and in flight performance. Mar Geod 38(Suppl 1):22–42. doi:10.1080/01490419.2014.988835
Verdin KL, Greenlee SK (1998) HYDRO1k documentation, US Geological Survey. https://lta.cr.usgs.gov/HYDRO1KReadMe. Accessed 24 Feb 2015
Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high resolution satellite imagery. Geophys Res Lett 41(18):6396–6402. doi:10.1002/2014GL060641
Walter KM, Smith LC, Chapin FS (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans R Soc A Math Phys Eng Sci 365(1856):1657–1676. doi:10.1098/rsta.2007.2036
Wolf AT, Natharius JA, Danielson JJ, Ward BS, Pender JK (1999) International river basins of the world. Int J Water Resour Dev 15(4):387–427
Wood EF, Roundy JK, Troy TJ, van Beek LPH, Bierkens MFP, Blyth E, de Roo A, Döll P, Ek M, Famiglietti J, Gochis D, van de Giesen N, Houser P, Jaffé PR, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C, Sivapalan M, Sheffield J, Wade A, Whitehead P (2011) Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour Res 47(5):W05301. doi:10.1029/2010WR010090
Yamazaki D, Kanae S, Kim H, Oki T (2011) A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour Res 47(4):W04501. doi:10.1029/2010WR009726
Yoon Y, Durand MT, Merry CJ, Clark EA, Andreadis KM, Alsdorf DE (2012) Estimating river bathymetry from data assimilation of synthetic SWOT measurements. J Hydrol 464:363–375. doi:10.1016/j.jhydrol.2012.07.028
Yoon Y, Durand MT, Merry CJ, Rodríguez E (2013) Improving temporal coverage of the SWOT mission using spatiotemporal kriging. IEEE IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1719–1729. doi:10.1109/JSTARS.2013.2257697
Zhang S, Gao H, Naz BS (2014) Monitoring storage in South Asia from multisatellite remote sensing. Water Resour Res 50(11):8927–8943. doi:10.1002/2014WR015829
Zhou T, Nijssen B, Gao H, Lettenmaier DP (2015) The contribution of reservoirs to global land surface water storage variations. J Hydrometeor. doi:10.1175/JHM-D-15-0002.1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Biancamaria, S., Lettenmaier, D.P., Pavelsky, T.M. (2016). The SWOT Mission and Its Capabilities for Land Hydrology. In: Cazenave, A., Champollion, N., Benveniste, J., Chen, J. (eds) Remote Sensing and Water Resources. Space Sciences Series of ISSI, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-32449-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-32449-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32448-7
Online ISBN: 978-3-319-32449-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)