Skip to main content

Tolerance to Drought Stress in Plants: Unravelling the Signaling Networks

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 2

Abstract

Growth, development, and response to diverse environmental cues in all organisms rely on extra-, inter-, and intracellular communication mediated by complex signaling networks. In plants, there are several ways to achieve this, which include a wide array of receptors, secondary messengers, cascading kinases, reactive oxygen species, phytohormones, mobile transcription factors, noncoding RNAs, and secreted signaling peptides. Plant stability under stress is also vested with the concerted performance of the nuclear, mitochondrial, and chloroplast genomes, the relationship among which is not well defined. However, the signaling pathways that aid in the communication between various organelles of a plant cell are complex and interdependent. Among the various abiotic stresses, giving more focus to unravel the diverse signaling networks associated with drought stress response would be more rewarding in the wake of the increasing threat of acute water shortages in conjunction with the highly unpredictable climate scenario. A comprehensive understanding of the intricate drought stress response signaling networks will help in identifying key strategic candidates which when pathway engineered could help in achieving realizable levels of drought tolerance. This is very critical in the context of the polygenic nature of drought tolerance. Hence in this chapter we aim to address diverse plant stress signaling pathways and their overlapping roles in imparting tolerance to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. doi:10.1093/jxb/err4601-16

    PubMed  PubMed Central  Google Scholar 

  2. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LP (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64(2):445–458

    Article  CAS  PubMed  Google Scholar 

  3. Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LS (2012) Chromium stress mitigation by polyamine–brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LS (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17:594–605

    Article  CAS  PubMed  Google Scholar 

  6. Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  7. Le DT, Nishiyama R, Watanabe Y, Vankova R, Tanaka M, Seki M, le Ham H, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS ONE 7:e42411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  9. Van Norman JM, Breakfield NW, Benfey PN (2011) Intercellular communication during plant development. Plant Cell 23:855–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, Girdhar K, Pandey GK (2014) Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium 56:81–95

    Google Scholar 

  11. Marshall A, Aalen RB, Audenaert D et al (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24:2262–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morillo SA, Tax FE (2006) Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol 9:460–469

    Article  CAS  PubMed  Google Scholar 

  13. Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun X, Wang GL (2011) Genome-wide identification, characterization and phylogenetic analysis of the rice LRR-kinases. PLoS ONE 6:e16079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, Crespi M (2009) A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21:668–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen LJ, Wuriyanghan H, Zhang YQ et al (2013) An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol 163:1752–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  CAS  PubMed  Google Scholar 

  19. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Torii KU (2000) Receptor kinase activation and signal transduction in plants: an emerging picture. Curr Opin Plant Biol 3:361–367

    Article  CAS  PubMed  Google Scholar 

  21. Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6:339–342

    Article  CAS  PubMed  Google Scholar 

  22. Jurca ME, Bottka S, Fehér A (2008) Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant Cell Rep 27:739–748

    Article  CAS  PubMed  Google Scholar 

  23. Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U.S.A. 98:10763–10768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  PubMed  Google Scholar 

  25. Venkategowda R, Basu S, Krishnan A, Pereira A (2014) The rice receptor-like cytoplasmic kinase GUDK is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166(3):1634–1645

    Article  CAS  Google Scholar 

  26. Vij S, Giri J, Dansana PK, Kapoor S, Tyagi AK (2008) The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Mol Plant 1:732–750

    Article  CAS  PubMed  Google Scholar 

  27. Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nongpiur R, Soni P, Karan R, Singla-Pareek SL, Pareek A (2012) Histidine kinases in plants: Cross talk between hormone and stress responses. Plant Signal Behav 7(10):1230–1237. doi:10.4161/psb.21516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pham J, Desikan R (2012) Modulation of ROS production and hormone levels by AHK5 during abiotic and biotic stress signaling. Plant Signal Behav 7(8):893–897. doi:10.4161/psb.20692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smékalová V, Doskočilová A, Komis G, Samaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32:2–11

    Article  PubMed  CAS  Google Scholar 

  31. Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3(8):525–536

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wei et al (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Munnik T, Meijer HJ (2001) Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett 498:172–178

    Article  CAS  PubMed  Google Scholar 

  34. Lee S, Hirt H, Lee Y (2001) Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J 26:479–486

    Article  CAS  PubMed  Google Scholar 

  35. Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33:627–635

    Article  CAS  PubMed  Google Scholar 

  36. Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497

    Article  CAS  PubMed  Google Scholar 

  37. Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Forzani C, Carreri A, de la Fuente van Bentem S, Lecourieux D, Lecourieux F, Hirt H (2011) The Arabidopsis protein kinase Pto-interacting 1–4 is a common target of the oxidative signal-inducible 1 and mitogen-activated protein kinases. FEBS J 278:1126–1136

    Google Scholar 

  39. Hong Y, Pan X, Welti R, Wang X (2008) Phospholipase Dalpha3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM et al (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

    Article  CAS  PubMed  Google Scholar 

  41. Zhou XF, Jin YH, Yoo CY, Lin XL, Kim WY, Yun DJ et al (2013) CYCLIN H;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting ROS accumulation in Arabidopsis. Plant Physiol 162:1030–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Graham Noctor G, Amna Mhamdi A, Christine H, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Google Scholar 

  43. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Environment 33:453–467

    CAS  Google Scholar 

  44. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  45. Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45

    Google Scholar 

  46. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  47. Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  48. Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    Google Scholar 

  49. Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S (2006) Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J 273:5589–5597

    Article  CAS  PubMed  Google Scholar 

  50. Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15:1129–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31:118–128

    Article  PubMed  CAS  Google Scholar 

  53. Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J Biol Chem 279:26959–26966

    Article  CAS  PubMed  Google Scholar 

  54. Lee SK, Kim BG, Kwon TR, Jeong MJ, Park SR, Lee JW, Byun MO, Kwon HB, Matthews BF, Hong CB, Park SC (2011) Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). J Biosci 36:139–151

    Article  CAS  PubMed  Google Scholar 

  55. Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006

    Article  CAS  PubMed  Google Scholar 

  56. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  CAS  PubMed  Google Scholar 

  57. Peng LX, Gu LK, Zheng CC, Li DQ, Shu HR (2006) Expression of MaMAPK gene in seedlings of Malus L. under water stress. Acta Biochim Biophys Sin (Shanghai) 38:281–286

    Article  CAS  Google Scholar 

  58. Moustafa K, AbuQamar S, Jarrar M, Al-Rajab AJ, Trémouillaux-Guiller J (2014) MAPK cascades and major abiotic stresses. Plant Cell Rep 33:1217–1225

    Article  CAS  PubMed  Google Scholar 

  59. Moustafa K, Lefebvre-De Vos D, Leprince A-S, Savourée A, Lauriére C (2008) Analysis of the Arabidopsis mitogen-activated protein kinase families: organ specificity and transcriptional regulation upon water stresses. Sch Res Exch 12. doi:10.3814/2008/143656

    Google Scholar 

  60. Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31

    Article  CAS  PubMed  Google Scholar 

  61. Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  CAS  PubMed  Google Scholar 

  62. Shi J, Zhang L, An H, Wu C, Guo X (2011) GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol 12:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang M, Zhang Y, Wang J, Wu X, Guo X (2007) A novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmental stresses. J Biochem Mol Biol 40:325–332

    Article  CAS  PubMed  Google Scholar 

  64. Gudesblat GE, Iusem ND, Morris PC (2007) Arabidopsis MPK3, a key signalling intermediate in stomatal function. Plant Signal Behav 2:271–272

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gudesblat GE, Iusem ND, Morris PC (2007) Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol 173:713–721

    Article  CAS  PubMed  Google Scholar 

  66. Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, Rakwal R (2003) Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun 300:775–783

    Article  CAS  PubMed  Google Scholar 

  67. Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun 294:1009–1016

    Article  CAS  PubMed  Google Scholar 

  68. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang X, Yang G, Shi R, Han X, Qi L, Wang R, Xiong L, Li G (2013) Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. Plant Physiol Biochem 67:189–198

    Article  CAS  PubMed  Google Scholar 

  70. Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS ONE 8:e64190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Merewitz EB, Gianfagna T, Huang B (2011) Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. J Exp Bot 62:383–395

    Article  CAS  PubMed  Google Scholar 

  72. Jagadeeswaran G, Zheng Y, Li YF, Shukla LI, Matts J, Hoyt P, Macmil SL, Wiley GB, Roe BA, Zhang W, Sunkar R (2009) Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol 184:85–98

    Article  CAS  PubMed  Google Scholar 

  73. Sheard LB, Zheng N (2009) Signal advance for abscisic acid. Nature 462(3):575–576

    Google Scholar 

  74. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1070

    CAS  PubMed  Google Scholar 

  75. Park SY, Fung P, Nishimura N, Jensen DR, Hiroaki F, Zhao Y et al (2009) Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA binding START proteins. Science 324:1068–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–660

    Article  CAS  PubMed  Google Scholar 

  77. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103:1988–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  80. Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    Article  CAS  PubMed  Google Scholar 

  81. Zhao Z, Zhang W, Stanley BA, Assmann SM (2008) Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20:3210–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jammes F, Song C, Shin D,Munemasa S, Takeda K, Gu D et al. (2009) MAP kinases MPK9 andMPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U.S.A. 106:20520–20525

    Google Scholar 

  83. Kim E, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. TIPS 17(1):1360–1385

    Google Scholar 

  84. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  85. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Au PCK, Zhu Q, Dennis ES, Wang M (2011) Long non-coding RNA-mediated mechanisms independent of the RNAi pathway in animals and plants. RNA Biol 8(3):404–414

    Article  CAS  PubMed  Google Scholar 

  87. Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. PNAS 109(7):2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu W, Lu S, Li F, Zhu L, Liu Z, Chen L, Liu Y, Zhuang C (2012) Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22(4):649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J. doi:10.1155/2013/610721

    Google Scholar 

  90. Ferdous J, Hussain SS, Shi B-J (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13:293–305

    Article  CAS  PubMed  Google Scholar 

  91. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897

    Article  CAS  PubMed  Google Scholar 

  92. Murphy E, Smith S, de Smeta I (2012) Small signaling peptides in arabidopsis development: how cells communicate over a short distance. Plant Cell 24:3198–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Matsubayashi Y (2012) Recent progress in research on small post-translationally modified peptide signals in plants. Genes Cells 17:1–10

    Article  CAS  PubMed  Google Scholar 

  94. Huang Q, Dresselhaus T, Gu H, Qu LJ (2015) The active role of small peptides in Arabidopsis reproduction: expression evidence. J Integr Plant Biol 57:518–521

    Article  CAS  PubMed  Google Scholar 

  95. Qu L-J, Li L, Lan Z, Dresselhaus T (2015) Peptide signalling during the pollen tube journey and double fertilization. J Exp Bot 66:5139–5150

    Article  CAS  PubMed  Google Scholar 

  96. Woriedh M, Merkl R, Dresselhaus T (2015) Maize ES family peptides interact differentially with pollen tubes and fungal cells. J Exp Bot 66:5205–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ingram G, Gutierrez-Marcos J (2015) Peptide signalling during angiosperm seed development. J Exp Bot 66:5151–5159

    Article  CAS  PubMed  Google Scholar 

  98. Li H, Dong Y, Yin H, Wang N, Yang J, Liu X, Wang Y, Wu J, Li X (2011) Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol 11:170. doi:10.1186/1471-2229-11-170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Qin Y, Duan Z, Xia X, Yin W (2011) Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. Plant Cell Rep 30:1893–1907

    Article  CAS  PubMed  Google Scholar 

  100. Ruzvidzo O, Donaldson L, Valentine A, Gehring C (2011) The Arabidopsis thaliana natriuretic peptide AtPNP-A is a systemic regulator of leaf dark respiration and signals via the phloem. J Plant Physiol 168:1710–1714

    Article  CAS  PubMed  Google Scholar 

  101. Chien P-S, Nam HG, Chen Y-R (2015) A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. J Exp Bot 66:5301–5313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jung H, Chory J (2010) Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol 152:453–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu Y, Arrieta-Montiel MP, Virdi KS, de Paula WBM, Widhalm JR, Basset GJ, Davila JI, Elthon TE, Elowsky CG, Sato SJ, Clemente TE, Mackenzie SA (2011) MutS HOMOLOG1 is a nucleoid protein that alters mitochondrial and plastid properties and plant response to high light. Plant Cell 23:3428–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70:599–613

    Article  CAS  PubMed  Google Scholar 

  105. Yang L, Ji W, Zhu Y, Gao P, Li Y, Cai H, Bai X, Guo D (2010) GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot 61:2519–2533

    Article  CAS  PubMed  Google Scholar 

  106. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  CAS  PubMed  Google Scholar 

  107. Giri J, Vij S, Dansana PK, Tyagi AK (2011) Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191:721–732

    Article  CAS  PubMed  Google Scholar 

  108. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K et al (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J Cell Mol Biol 24:655–665

    Article  CAS  Google Scholar 

  110. Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C (2002) Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett 527:43–50

    Article  CAS  PubMed  Google Scholar 

  111. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    Article  CAS  PubMed  Google Scholar 

  112. Kumar K, Rao KP, Sharma P, Sinha AK (2008) Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem PPB/Societe francaise de physiologie vegetale 46:891–897

    Article  CAS  Google Scholar 

  113. Wen JQ, Oono K, Imai R (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fu SF, Chou WC, Huang DD, Huang HJ (2002) Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol 43:958–963

    Article  CAS  PubMed  Google Scholar 

  115. Ning J, Li X, Hicks LM, Xiong L (2010) A raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang J, Ding H, Zhang A, Ma F, Cao J, Jiang M (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52:442–452

    CAS  PubMed  Google Scholar 

  118. Arenas-Huertero C, Perez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Alicia Covarrubias A, Luis Reyes J (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  CAS  PubMed  Google Scholar 

  119. Eldem V, Akcay UC, Ozhuner E, Bakir Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS ONE 7:e50298. doi:10.1371/journal.pone.0050298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(787–799):30144

    Google Scholar 

  121. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 49:592–606

    Article  CAS  PubMed  Google Scholar 

  123. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

  124. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics 12:327–339

    Article  CAS  PubMed  Google Scholar 

  127. Trindade I, Capitao C, Dalmay T, Fevereiro MP, dos Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716

    Article  CAS  PubMed  Google Scholar 

  128. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  129. Wang T, Chen L, Zhao M, Tian Q, Zhang WH (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genom 12:1–11

    Article  CAS  Google Scholar 

  130. Wang YH, Gehring C, Irving HR (2011) Plant natriuretic peptides are apoplastic and paracrine stress response molecules. Plant Cell Physiol 52(5):837–850

    Article  CAS  PubMed  Google Scholar 

  131. Kantar M, Lucas S, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    Article  CAS  PubMed  Google Scholar 

  132. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  133. Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high throughput sequencing and their targets using degradome analysis. BMC Genom 14:233. doi:10.1186/1471-2164-14-233

    Article  CAS  Google Scholar 

  134. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  135. Thipyapong P, Melkonian J, Wolfe DW, Steffens JC (2004) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci 167:693–703

    Article  CAS  Google Scholar 

  136. Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010) A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285:7119–7126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is partly supported by Department of Biotechnology and Indian Council of Agricultural Research, Government of India, New Delhi. PMS would like to thank CSIR-UGC, New Delhi for providing a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karaba Nalkur Nataraja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nataraja, K.N., Parvathi, M.S. (2016). Tolerance to Drought Stress in Plants: Unravelling the Signaling Networks. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-32423-4_3

Download citation

Publish with us

Policies and ethics