Skip to main content

Genetics of Drought Stress Tolerance in Crop Plants

  • Chapter
  • First Online:
Book cover Drought Stress Tolerance in Plants, Vol 2

Abstract

Drought is the single abiotic stress with the biggest impact on global crop yields, thus improving crop performance under water-limiting conditions is essential to global food security. This chapter is intended to cover a broad overview of traits and mechanisms known to play a role in drought tolerance in crop plants. Although traditional breeding has largely focused on improving yield under stress-free conditions, a number of mechanisms exist that may be exploited to improve drought tolerance; these include the ABA signaling network for regulation of stomatal movements and root architecture modifications. This chapter reviews the biochemical and molecular modifications induced by water deficit. Stress-induced regulatory genes, specifically involved in marshaling survival responses in metabolism and development, are covered. Traits and genes from tolerant varieties, landraces, and wild relatives, known to contribute to drought tolerance from major crops are also addressed. As our understanding of signaling pathways improves based on studies in models, new traits and opportunities for genetic improvement emerge. Developing varieties that have high yields and are yield-stable in dry environments requires progress in both understanding and applying of genetic and physiological processes. This chapter covers the key traits and genes that have the greatest potential for improving drought tolerance in crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe H, Yamaguchi-Shinozaki K, Urao T et al (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868. doi:10.1105/tpc.9.10.1859

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Abe H, Urao T, Ito T et al (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78. doi:10.1105/tpc.006130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adebayo MA, Menkir A, Blay E et al (2013) Genetic analysis of drought tolerance in adapted × exotic crosses of maize inbred lines under managed stress conditions. Euphytica 196:261–270. doi:10.1007/s10681-013-1029-5

    Article  CAS  Google Scholar 

  4. Adiredjo AL, Navaud O, Muños S et al (2014) Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios. PLoS One. doi:10.1371/journal.pone.0101218

    Google Scholar 

  5. Aharoni A, Dixit S, Jetter R et al (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in arabidopsis. Plant Cell 16:2463–2480. doi:10.1105/tpc.104.022897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Abdallat AM, Al-Debei HS, Ayad JY, Hasan S (2014) Over-expression of SlSHN1 gene improves drought tolerance by increasing cuticular wax accumulation in tomato. Int J Mol Sci 15:19499–19515. doi:10.3390/ijms151119499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alcázar R, Altabella T, Marco F et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249. doi:10.1007/s00425-010-1130-0

    Article  PubMed  CAS  Google Scholar 

  8. Ali A, Arshad M, Naqvi SMS et al (2015) Comparative assessment of synthetic-derived and conventional bread wheat advanced lines under osmotic stress and implications for molecular analysis. Plant Mol Biol Rep 1–11. doi:10.1007/s11105-015-0884-8

    Google Scholar 

  9. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  10. Arai-Sanoh Y, Takai T, Yoshinaga S et al (2014) Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Sci Rep. doi:10.1038/srep05563

    PubMed  PubMed Central  Google Scholar 

  11. Arms EM, Bloom AJ, St Clair DA (2015) High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling. Theor Appl Genet 128:1713–1724. doi:10.1007/s00122-015-2540-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006

    Article  CAS  Google Scholar 

  13. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. doi:10.1016/j.plantsci.2003.10.024

    Article  CAS  Google Scholar 

  14. Atwell BJ, Wang H, Scafaro AP (2014) Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci 215–216:48–58. doi:10.1016/j.plantsci.2013.10.007

    Article  PubMed  CAS  Google Scholar 

  15. Badawi GH, Yamauchi Y, Shimada E et al (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  16. Bai G, Yang D-H, Zhao Y et al (2013) Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Mol Biol 83:651–664. doi:10.1007/s11103-013-0114-4

    Article  CAS  PubMed  Google Scholar 

  17. Bamberg JB, del Rio A (2005) Conservation of potato genetic resources. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol I: Potato. Science Publishers, Inc. Plymouth, p. 476

    Google Scholar 

  18. Barbieri G, Vallone S, Orsini F et al (2012) Stomatal density and metabolic determinants mediate salt stress adaptation and water use efficiency in basil (Ocimum basilicum L.). J Plant Physiol 169:1737–1746. doi:10.1016/j.jplph.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  19. Barker H (1996) Inheritance of resistance to potato viruses Y and A in progeny obtained from potato cultivars containing gene Ry: evidence for a new gene for extreme resistance to PVA. Theor Appl Genet 93:710–716. doi:10.1007/BF00224066

    Article  CAS  PubMed  Google Scholar 

  20. Bazargani MM, Sarhadi E, Bushehri A-AS et al (2011) A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteomics 74:1959–1973. doi:10.1016/j.jprot.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  21. Becker D, Dreyer I, Hoth S et al (1996) Changes in voltage activation, Cs + sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1. Proc Natl Acad Sci USA 93:8123–8128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bengtson C, Larsson S, Liljenberg C (1978) Effects of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties. Physiol Plant 44:319–324. doi:10.1111/j.1399-3054.1978.tb01630.x

    Article  CAS  Google Scholar 

  23. Bernard A, Joubès J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129. doi:10.1016/j.plipres.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  25. Bleeker PM, Spyropoulou EA, Diergaarde PJ et al (2011) RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol Biol 77:323–336. doi:10.1007/s11103-011-9813-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blum A, Golan G, Mayer J et al (1989) The drought response of landraces of wheat from the northern Negev Desert in Israel. Euphytica 43:87–96. doi:10.1007/BF00037900

    Article  Google Scholar 

  27. Bolger A, Scossa F, Bolger ME et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034–1038. doi:10.1038/ng.3046

    Article  CAS  PubMed  Google Scholar 

  28. Bondada BR, Oosterhuis DM, Murphy JB, Kim KS (1996) Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract, and boll. Environ Exp Bot 36:61–69. doi:10.1016/0098-8472(96)00128-1

    Article  CAS  Google Scholar 

  29. Borlaug NE (2003) Feeding a world of 10 billion people: our 21st century challenge. In: Scanes CG, Miranowski JA (eds) Perspectives in world food and agriculture 2004. Iowa State Press, pp 31–56

    Google Scholar 

  30. Brar DS (2005) Broadening the gene pool of rice through introgression from wild species. International Rice Research Institute (IRRI), pp 157–160

    Google Scholar 

  31. Broun P, Poindexter P, Osborne E et al (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711. doi:10.1073/pnas.0305574101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cabello R, De Mendiburu F (2012) Large-scale evaluation of potato improved varieties, genetic stocks and landraces for drought tolerance. Am J Potato Res. doi:10.1007/s12230-012-9260-5

    Google Scholar 

  33. Cabello R, Monneveux P, Mendiburu FD, Bonierbale M (2013) Comparison of yield based drought tolerance indices in improved varieties, genetic stocks and landraces of potato (Solanum tuberosum L.). Euphytica 193:147–156. doi:10.1007/s10681-013-0887-1

    Article  Google Scholar 

  34. Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183. doi:10.1104/pp.105.069724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Campos H, Cooper M, Habben JE et al (2004) Improving drought tolerance in maize: a view from industry. Field Crops Res 90:19–34. doi:10.1016/j.fcr.2004.07.003

    Article  Google Scholar 

  36. Cao M, Li X (2010) Die for living better. Plant Signal Behav 5:1645–1646. doi:10.4161/psb.5.12.13811

    Article  PubMed  PubMed Central  Google Scholar 

  37. Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914. doi:10.1073/pnas.0306974101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cavanagh CR, Chao S, Wang S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS 110:8057–8062. doi:10.1073/pnas.1217133110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chai Y, Jia H, Li C et al (2011) FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62:5079–5089. doi:10.1093/jxb/err207

    Article  CAS  PubMed  Google Scholar 

  40. Chen G, Komatsuda T, Ma JF et al (2011) A functional cutin matrix is required for plant protection against water loss. Plant Signal Behav 6:1297–1299. doi:10.4161/psb.6.9.17507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen H, Chen X, Chen D et al (2015) A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC Plant Biol 15:132. doi:10.1186/s12870-015-0521-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chen Y-S, Lo S-F, Sun P-K et al (2015) A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol J 13:105–116. doi:10.1111/pbi.12241

    Article  CAS  PubMed  Google Scholar 

  43. Chimungu JG, Brown KM, Lynch JP (2014) Large root cortical cell size improves drought tolerance in maize. Plant Physiol 166:2166–2178. doi:10.1104/pp.114.250449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chimungu JG, Brown KM, Lynch JP (2014) Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiol 166:1943–1955. doi:10.1104/pp.114.249037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Cominelli E, Sala T, Calvi D et al (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64. doi:10.1111/j.1365-313X.2007.03310.x

    Article  CAS  PubMed  Google Scholar 

  46. Cominelli E, Galbiati M, Tonelli C (2010) Transcription factors controlling stomatal movements and drought tolerance. Transcription 1:41–45. doi:10.4161/trns.1.1.12064

    Article  PubMed  PubMed Central  Google Scholar 

  47. Conde A, Silva P, Agasse A et al (2011) Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses. Plant Cell Physiol 52:1766–1775. doi:10.1093/pcp/pcr121

    Article  CAS  PubMed  Google Scholar 

  48. Cossani CM, Reynolds MP (2015) Heat stress adaptation in elite lines derived from synthetic hexaploid wheat. Crop Sci. doi:10.2135/cropsci2015.02.0092

    Google Scholar 

  49. D’hoop BB, Paulo MJ, Mank RA et al (2007) Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica 161:47–60. doi:10.1007/s10681-007-9565-5

    Article  Google Scholar 

  50. de Miguel M, Cabezas J-A, de María N et al (2014) Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification. BMC Genom 15:464. doi:10.1186/1471-2164-15-464

    Article  CAS  Google Scholar 

  51. Den Herder GD, Isterdael GV, Beeckman T, Smet ID (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607. doi:10.1016/j.tplants.2010.08.009

    Article  CAS  Google Scholar 

  52. Denčić S, Kastori R, Kobiljski B, Duggan B (2000) Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 113:43–52. doi:10.1023/A:1003997700865

    Article  Google Scholar 

  53. Ding Z, Li S, An X et al (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36:17–29. doi:10.1016/S1673-8527(09)60003-5

    Article  CAS  PubMed  Google Scholar 

  54. Do PT, Drechsel O, Heyer AG et al (2014) Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. Front Plant Sci 5:182. doi:10.3389/fpls.2014.00182

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ehdaie B, Waines JG, Hall AE (1988) Differential responses of landrace and improved spring wheat genotypes to stress environments. Crop Sci 28:838. doi:10.2135/cropsci1988.0011183X002800050024x

    Article  Google Scholar 

  56. Eisenach C, Papanatsiou M, Hillert E-K, Blatt MR (2014) Clustering of the K+ channel GORK of Arabidopsis parallels its gating by extracellular K+. Plant J 78:203–214. doi:10.1111/tpj.12471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Elliott J, Deryng D, Müller C et al (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. PNAS 111:3239–3244. doi:10.1073/pnas.1222474110

    Article  CAS  PubMed  Google Scholar 

  58. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Faghani E, Gharechahi J, Komatsu S et al (2015) Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J Proteomics 114:1–15. doi:10.1016/j.jprot.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  60. Fath A, Bethke P, Beligni V, Jones R (2002) Active oxygen and cell death in cereal aleurone cells. J Exp Bot 53:1273–1282. doi:10.1093/jexbot/53.372.1273

    Article  CAS  PubMed  Google Scholar 

  61. Finkers R, van Heusden AW, Meijer-Dekens F et al (2007) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114:1071–1080. doi:10.1007/s00122-006-0500-2

    Article  PubMed  PubMed Central  Google Scholar 

  62. Foolad MR (2007) Current status of breeding tomatoes for salt and drought tolerance. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, pp 669–700

    Chapter  Google Scholar 

  63. Franks PJ, Doheny-Adams TW, Britton-Harper ZJ, Gray JE (2015) Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol 207:188–195. doi:10.1111/nph.13347

    Article  CAS  PubMed  Google Scholar 

  64. Fujii H, Chinnusamy V, Rodrigues A et al (2009) In vitro reconstitution of an ABA signaling pathway. Nature 462:660–664. doi:10.1038/nature08599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345. doi:10.1104/pp.106.079079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garg AK, Kim J-K, Owens TG et al (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. PNAS 99:15898–15903. doi:10.1073/pnas.252637799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geiger D, Scherzer S, Mumm P et al (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. PNAS 106:21425–21430. doi:10.1073/pnas.0912021106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. George S, Venkataraman G, Parida A (2010) A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. J Plant Physiol 167:311–318. doi:10.1016/j.jplph.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  69. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  70. González A, Ayerbe L (2009) Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica 172:341–349. doi:10.1007/s10681-009-0027-0

    Article  Google Scholar 

  71. González-Guzmán M, Rodríguez L, Lorenzo-Orts L et al (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65:4451–4464. doi: 10.1093/jxb/eru219

    Google Scholar 

  72. Goodwin SM, Jenks MA (2005) Plant cuticle function as a barrier to water loss. In: Jenks MA, Hasegawa PM (eds) Plant abiotic stress. Blackwell Publishing Ltd, Hoboken, pp 14–36

    Chapter  Google Scholar 

  73. Gowda VRP, Henry A, Yamauchi A et al (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crops Res 122:1–13. doi:10.1016/j.fcr.2011.03.001

    Article  Google Scholar 

  74. Grover A, Singh A, Blumwald E (2011) Transgenic strategies toward the development of salt-tolerant plants. Agricultural salinity assessment and management, 2nd edn, pp. 235–274. doi: 10.1061/9780784411698.ch08

    Google Scholar 

  75. Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:e245. doi:10.1371/journal.pbio.0020245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hashimoto M, Negi J, Young J et al (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8:391–397. doi:10.1038/ncb1387

    Article  CAS  PubMed  Google Scholar 

  77. Hayano-Kanashiro C, Calderón-Vázquez C, Ibarra-Laclette E et al (2009) Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS ONE 4:e7531. doi:10.1371/journal.pone.0007531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Hepworth C, Doheny-Adams T, Hunt L et al (2015) Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol 208:336–341. doi:10.1111/nph.13598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hijmans RJ, Spooner DM (2001) Geographic distribution of wild potato species. Am J Bot 88:2101–2112

    Article  CAS  PubMed  Google Scholar 

  80. Hijmans RJ, Jacobs M, Bamberg JB, Spooner DM (2003) Frost tolerance in wild potato species: assessing the predictivity of taxonomic, geographic, and ecological factors. Euphytica 130:47–59. doi:10.1023/A:1022344327669

    Article  Google Scholar 

  81. Horling F, Lamkemeyer P, König J et al (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131:317–325. doi:10.1104/pp.010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hosy E, Vavasseur A, Mouline K et al (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549–5554. doi:10.1073/pnas.0733970100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu H, Dai M, Yao J et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992. doi:10.1073/pnas.0604882103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu H, Boisson-Dernier A, Israelsson-Nordström M et al (2010) Carbonic anhydrases are upstream regulators in guard cells of CO2-controlled stomatal movements. Nat Cell Biol 12:87–93. doi:10.1038/ncb2009

    Article  CAS  PubMed  Google Scholar 

  85. Hu J, Rampitsch C, Bykova NV (2015) Advances in plant proteomics toward improvement of crop productivity and stress resistancex. Front Plant Sci. doi:10.3389/fpls.2015.00209

    Google Scholar 

  86. Huang X-Y, Chao D-Y, Gao J-P et al (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817. doi:10.1101/gad.1812409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967. doi:10.1038/ng.695

    Article  CAS  PubMed  Google Scholar 

  88. Hund A, Ruta N, Liedgens M (2008) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318:311–325. doi:10.1007/s11104-008-9843-6

    Article  CAS  Google Scholar 

  89. Ingram PA, Zhu J, Shariff A et al (2012) High-throughput imaging and analysis of root system architecture in Brachypodium distachyon under differential nutrient availability. Philos Trans R Soc Lond B Biol Sci 367:1559–1569. doi:10.1098/rstb.2011.0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. International Potato Center (CIP) (2013) CIP strategy and corporate plan, research, innovation and impact, 2014–2023. Lima, p 51

    Google Scholar 

  91. Iovene M, Barone A, Frusciante L et al (2004) Selection for aneuploid potato hybrids combining a low wild genome content and resistance traits from Solanum commersonii. Theor Appl Genet 109:1139–1146. doi:10.1007/s00122-004-1741-6

    Article  CAS  PubMed  Google Scholar 

  92. Islam MA, Du H, Ning J et al (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443–456. doi:10.1007/s11103-009-9483-0

    Article  CAS  PubMed  Google Scholar 

  93. Iwata S, Miyazawa Y, Fujii N, Takahashi H (2013) MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions. Ann Bot 112:103–114. doi:10.1093/aob/mct098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The International oryza map alignment project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:147–156. doi:10.1016/j.pbi.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  95. Jansky S (2010) Breeding for disease resistance in Potato. In: Janick J (ed) Plant breeding reviews. Wiley, Oxford (Volume 19)

    Google Scholar 

  96. Javelle M, Vernoud V, Depège-Fargeix N et al (2010) Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor OUTER CELL LAYER1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol 154:273–286. doi:10.1104/pp.109.150540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377. doi:10.1104/pp.108.1.369

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jeong JS, Kim YS, Baek KH et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197. doi:10.1104/pp.110.154773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54:670–683. doi:10.1111/j.1365-313X.2008.03467.x

    Article  CAS  PubMed  Google Scholar 

  100. Jordan WR, Shouse PJ, Blum A et al (1984) Environmental physiology of sorghum. II. Epicuticular wax load and cuticular transpiration. Crop Sci 24:1168. doi:10.2135/cropsci1984.0011183X002400060038x

    Article  Google Scholar 

  101. Julier B, Bernard K, Gibelin C et al (2010) QTL for water use efficiency in alfalfa. In: Huyghe C (ed) Sustainable use of genetic diversity in forage and turf breeding. Springer, Netherlands, pp 433–436

    Chapter  Google Scholar 

  102. Jung JKHM, McCouch SRM (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4:186. doi:10.3389/fpls.2013.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jung C, Seo JS, Han SW et al (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic arabidopsis. Plant Physiol 146:623–635. doi:10.1104/pp.107.110981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kalazich JC, Plaisted RL (1991) Association between trichome characters and agronomic traits in Solanum tuberosum (L.)XS. berthaultii (hawkes) hybrids. Am Potato J 68:833–847. doi:10.1007/BF02853857

    Article  Google Scholar 

  105. Keenan TF, Hollinger DY, Bohrer G et al (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–327. doi:10.1038/nature12291

    Article  CAS  PubMed  Google Scholar 

  106. Kim MJ, Shin R, Schachtman DP (2009) A nuclear factor regulates abscisic acid responses in arabidopsis. Plant Physiol 151:1433–1445. doi:10.1104/pp.109.144766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim T-H, Böhmer M, Hu H et al (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591. doi:10.1146/annurev-arplant-042809-112226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim H, Hwang H, Hong J-W et al (2012) A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63:1013–1024. doi:10.1093/jxb/err338

    Article  CAS  PubMed  Google Scholar 

  109. Klingler JP, Batelli G, Zhu J-K (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot. doi:10.1093/jxb/erq151

    Google Scholar 

  110. Koenig D, Jiménez-Gómez JM, Kimura S et al (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. PNAS 110:E2655–E2662. doi:10.1073/pnas.1309606110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kondo M, Murty MVR, Aragones DV (2000) Characteristics of root growth and water uptake from soil in upland rice and maize under water stress. Soil Sci Plant Nutr 46:721–732. doi:10.1080/00380768.2000.10409137

    Article  Google Scholar 

  112. Koyro H-W, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Chapter  Google Scholar 

  113. Kumar V, Shriram V, Hossain MA, Kishor PK (2015) Engineering proline metabolism for enhanced plant salt stress tolerance. Managing salt tolerance in plants: molecular and genomic perspectives 353

    Google Scholar 

  114. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80. doi:10.1016/S0163-7827(02)00045-0

    Article  CAS  PubMed  Google Scholar 

  115. Kwak JM (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in arabidopsis. EMBO J 22:2623–2633. doi:10.1093/emboj/cdg277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Langridge P, Reynolds MP (2015) Genomic tools to assist breeding for drought tolerance. Curr Opin Biotechnol 32:130–135. doi:10.1016/j.copbio.2014.11.027

    Article  CAS  PubMed  Google Scholar 

  117. Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570. doi:10.1104/pp.114.237107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee M, Choi Y, Burla B et al (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10:1217–1223. doi:10.1038/ncb1782

    Article  CAS  PubMed  Google Scholar 

  119. Lee S, Kang J, Park H-J et al (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727. doi:10.1104/pp.110.154617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9:315–327. doi:10.1111/j.1467-7652.2010.00560.x

    Article  CAS  PubMed  Google Scholar 

  121. Li W-X, Oono Y, Zhu J et al (2008) The arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251. doi:10.1105/tpc.108.059444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liang Y-K, Dubos C, Dodd IC et al (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 15:1201–1206. doi:10.1016/j.cub.2005.06.041

    Article  CAS  PubMed  Google Scholar 

  123. Liu J, Zhang F, Zhou J et al (2011) Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol 78:289–300. doi:10.1007/s11103-011-9860-3

    Article  PubMed  CAS  Google Scholar 

  124. Liu S, Wang X, Wang H et al (2013) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of zea mays L. PLoS Genet 9:e1003790. doi:10.1371/journal.pgen.1003790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu H, Yu C, Li H et al (2015) Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci 231:198–211. doi:10.1016/j.plantsci.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  126. Lobell DB, Roberts MJ, Schlenker W et al (2014) Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344:516–519. doi:10.1126/science.1251423

    Article  CAS  PubMed  Google Scholar 

  127. Lopes MS, El-Basyoni I, Baenziger PS et al (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66:3477–3486. doi:10.1093/jxb/erv122

    Article  CAS  PubMed  Google Scholar 

  128. Loukehaich R, Wang T, Ouyang B et al (2012) SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot. doi:10.1093/jxb/ers220

    Google Scholar 

  129. Lü S, Zhao H, Marais DLD et al (2012) Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol 159:930–944. doi:10.1104/pp.112.198697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. In: Brady NC (ed) Advances in agronomy. Academic Press, Cambridge, pp 107–153

    Google Scholar 

  131. Lv S, Yang A, Zhang K et al (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breeding 20:233–248. doi:10.1007/s11032-007-9086-x

    Article  CAS  Google Scholar 

  132. Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ma Y, Szostkiewicz I, Korte A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068. doi:10.1126/science.1172408

    CAS  PubMed  Google Scholar 

  134. Machida-Hirano R (2015) Diversity of potato genetic resources. Breed Sci 65:26–40. doi:10.1270/jsbbs.65.26

    Article  PubMed  PubMed Central  Google Scholar 

  135. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell Environ 28:67–77. doi:10.1111/j.1365-3040.2005.01306.x

    Article  CAS  Google Scholar 

  136. Mani F, Amrhein C (2015) Genomic advances in potato drought tolerance. J Chem Bio Phy Sci 5:1677–1699

    CAS  Google Scholar 

  137. Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243:1725–1728. doi: 10.1126/science.243.4899.1725

    Google Scholar 

  138. Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in arabidopsis. Nature 436:866–870. doi:10.1038/nature03835

    Article  CAS  PubMed  Google Scholar 

  139. McDowell ET, Kapteyn J, Schmidt A et al (2011) Comparative functional genomic analysis of solanum glandular trichome types. Plant Physiol 155:524–539. doi:10.1104/pp.110.167114

    Article  CAS  PubMed  Google Scholar 

  140. McKersie B (2015) Planning for food security in a changing climate. J Exp Bot 66:3435–3450. doi:10.1093/jxb/eru547

    Article  CAS  PubMed  Google Scholar 

  141. Meng L-S, Yao S-Q (2015) Transcription co-activator arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA). Plant Biotechnol J 13:893–902. doi:10.1111/pbi.12324

    Article  CAS  PubMed  Google Scholar 

  142. Merlot S, Leonhardt N, Fenzi F et al (2007) Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216–3226. doi:10.1038/sj.emboj.7601750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Messmer R, Fracheboud Y, Bänziger M et al (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930. doi:10.1007/s00122-009-1099-x

    Article  PubMed  Google Scholar 

  144. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467. doi:10.1111/j.1365-3040.2009.02041.x

    Article  CAS  Google Scholar 

  145. Mittova V, Volokita M, Guy M (2015) Antioxidative systems and stress tolerance: insight from wild and cultivated tomato species. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants. Springer International Publishing, Berlin, pp 89–131

    Google Scholar 

  146. Monforte AJ, Tanksley SD (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813. doi:10.1139/g00-043

    Article  CAS  PubMed  Google Scholar 

  147. Monneveux P, Sánchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations. Crop Sci 46:180. doi:10.2135/cropsci2005.04-0034

    Article  Google Scholar 

  148. Monneveux P, Sanchez C, Tiessen A (2008) Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J Agri Sci 146:287–300. doi:10.1017/S0021859608007818

    Article  Google Scholar 

  149. Ochoa CM (1999) Las papas de sudamerica: Peru (Parte I). International Potato Center, Lima, p 1036

    Google Scholar 

  150. Orsini F, Alnayef M, Bona S et al (2012) Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity. Environ Exp Bot 81:1–10. doi:10.1016/j.envexpbot.2012.02.005

    Article  CAS  Google Scholar 

  151. Park S-Y, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071. doi:10.1126/science.1173041

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Pecetti L, Boggini G, Gorham J (1994) Performance of durum wheat landraces in a Mediterranean environment (eastern Sicily). Euphytica 80:191–199. doi:10.1007/BF00039650

    Article  Google Scholar 

  153. Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320:171–173. doi:10.1126/science.320.5873.171

    Article  CAS  PubMed  Google Scholar 

  154. Placido DF, Campbell MT, Folsom JJ et al (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161:1806–1819. doi:10.1104/pp.113.214262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Quan R, Shang M, Zhang H et al (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486. doi:10.1111/j.1467-7652.2004.00093.x

    Article  CAS  PubMed  Google Scholar 

  156. Ranganayakulu G, Veeranagamallaiah G, Sudhaka C (2013) Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance. Afr J Plant Sci 7:586–592. doi:10.5897/AJPS11.063

    Article  CAS  Google Scholar 

  157. Redillas MCFR, Jeong JS, Kim YS et al (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805. doi:10.1111/j.1467-7652.2012.00697.x

    Article  CAS  PubMed  Google Scholar 

  158. Reguera M, Peleg Z, Blumwald E (2012) Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochimica et Biophysica Acta (BBA)—Gene Regul Mech 1819:186–194. doi:10.1016/j.bbagrm.2011.08.005

    Google Scholar 

  159. Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186. doi:10.1093/jxb/erl250

    Article  CAS  PubMed  Google Scholar 

  160. Rick CM, Tanksley SD (1981) Genetic variation inSolanum pennellii: comparisons with two other sympatric tomato species. Pl Syst Evol 139:11–45. doi:10.1007/BF00983920

    Article  Google Scholar 

  161. Riederer M (2006) Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. J Exp Bot 57:2937–2942. doi:10.1093/jxb/erl053

    Article  CAS  PubMed  Google Scholar 

  162. Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032. doi:10.1093/jexbot/52.363.2023

    Article  CAS  PubMed  Google Scholar 

  163. Romero P, Lafuente MT, Rodrigo MJ (2012) The citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J Exp Bot 63:4931–4945. doi:10.1093/jxb/ers168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Saavedra X, Modrego A, Rodríguez D et al (2010) The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress. Plant Physiol 152:133–150. doi:10.1104/pp.109.146381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sade D, Shriki O, Cuadros-Inostroza A et al (2014) Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 11:81–97. doi:10.1007/s11306-014-0670-x

    Article  CAS  Google Scholar 

  166. Samdur MY, Manivel P, Jain VK et al (2003) Genotypic differences and water-deficit induced enhancement in epicuticular wax load in peanut. Crop Sci 43:1294. doi:10.2135/cropsci2003.1294

    Article  Google Scholar 

  167. Samuels L, DeBono A, Lam P et al (2008) Use of arabidopsis eceriferum mutants to explore plant cuticle biosynthesis. J Vis Exp. doi:10.3791/709

    PubMed  PubMed Central  Google Scholar 

  168. Sato A, Sato Y, Fukao Y et al (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424:439–448. doi:10.1042/BJ20091221

    Article  CAS  PubMed  Google Scholar 

  169. Seo PJ, Lee SB, Suh MC et al (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in arabidopsis. Plant Cell 23:1138–1152. doi:10.1105/tpc.111.083485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:e217037. doi:10.1155/2012/217037

    Google Scholar 

  171. Singh V, van Oosterom EJ, Jordan DR et al (2010) Morphological and architectural development of root systems in sorghum and maize. Plant Soil 333:287–299. doi:10.1007/s11104-010-0343-0

    Article  CAS  Google Scholar 

  172. Singh BP, Jayaswal PK, Singh B et al (2015) Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance. Plant Cell Rep 34:993–1004. doi:10.1007/s00299-015-1760-6

    Article  CAS  PubMed  Google Scholar 

  173. Sirichandra C, Gu D, Hu H-C et al (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986. doi:10.1016/j.febslet.2009.08.033

    Article  CAS  PubMed  Google Scholar 

  174. Solankey S, Singh R, Baranwal D, Singh D (2014) Integrated genomics, physio-chemical and breeding approaches for improving heat and drought tolerance in Tomato

    Google Scholar 

  175. Song C-P, Agarwal M, Ohta M et al (2005) role of an arabidopsis AP2/EREBP-Type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396. doi:10.1105/tpc.105.033043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Spooner DM, Bamberg JB (1994) Potato genetic resources: sources of resistance and systematics. Am Potato J 71:325–337. doi:10.1007/BF02849059

    Article  Google Scholar 

  177. Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948. doi:10.1016/j.plantsci.2003.12.004

    Article  CAS  Google Scholar 

  178. Suárez R, Calderón C, Iturriaga G (2009) Enhanced tolerance to multiple abiotic stresses in transgenic Alfalfa accumulating trehalose. Crop Sci 49:1791. doi:10.2135/cropsci2008.09.0573

    Article  CAS  Google Scholar 

  179. Sun L, Wang Y-P, Chen P et al (2011) Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62:5659–5669. doi:10.1093/jxb/err252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tambussi EA, Bort J, Araus Jl (2007) Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Ann Appl Biol 150:307–321. doi:10.1111/j.1744-7348.2007.00143.x

    Article  Google Scholar 

  181. Tapia G, Méndez J, Inostroza L (2015) Different combinations of morpho-physiological traits are responsible for tolerance to drought in wild tomatoes Solanum chilense and Solanum peruvianum. Plant Biol J n/a–n/a. doi:10.1111/plb.12409

    Google Scholar 

  182. Tateishi Y, Nakagawa T, Esaka M (2005) Osmotolerance and growth stimulation of transgenic tobacco cells accumulating free proline by silencing proline dehydrogenase expression with double-stranded RNA interference technique. Physiol Plant 125:224–234. doi:10.1111/j.1399-3054.2005.00553.x

    Article  CAS  Google Scholar 

  183. The 100 Tomato Genome Sequencing Consortium, Aflitos S, Schijlen E et al (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148. doi:10.1111/tpj.12616

    Article  Google Scholar 

  184. Tian W, Hou C, Ren Z et al (2015) A molecular pathway for CO2 response in Arabidopsis guard cells. Nat Commun 6:6057. doi:10.1038/ncomms7057

    Article  CAS  PubMed  Google Scholar 

  185. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18. doi:10.1007/s00425-014-2055-9

    Article  CAS  PubMed  Google Scholar 

  186. Uga Y, Sugimoto K, Ogawa S et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102. doi:10.1038/ng.2725

    Article  CAS  PubMed  Google Scholar 

  187. Upadhyay RK, Soni DK, Singh R et al (2013) SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. J Exp Bot 64:3237–3247. doi:10.1093/jxb/ert162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Vacher J, Garcia M, La Papa Amarga : Mesa Redonda Peru-Bolivia, 1., La Paz (BOL), 1991/05/07-08, Avilés D (1992) Uso consuntivo y comportamiento hidrico de la papa amarga (Solanum juzepczukii) y de la papa dulce (Solanum tuberosum ssp. andigena) en el Altiplano boliviano. In: Rea J, Vacher J, Garcia M, Gonzales C (eds) La papa amarga. ORSTOM, La Paz, pp 69–76

    Google Scholar 

  189. Vahisalu T, Kollist H, Wang Y-F et al (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491. doi:10.1038/nature06608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195. doi:10.1016/j.pbi.2006.01.019

    Article  CAS  PubMed  Google Scholar 

  191. Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18. doi:10.1093/jxb/ern297

    Article  PubMed  CAS  Google Scholar 

  192. Vanderauwera S, Vandenbroucke K, Inzé A et al (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. PNAS 109:20113–20118. doi:10.1073/pnas.1217516109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Vendruscolo ECG, Schuster I, Pileggi M et al (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376. doi:10.1016/j.jplph.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  194. Waines JG, Ehdaie B (2007) Domestication and crop physiology: roots of green-revolution wheat. Ann Bot 100:991–998. doi:10.1093/aob/mcm180

    Article  PubMed  PubMed Central  Google Scholar 

  195. Wang W, Zhang Y, Xu C et al (2014) Cucumber ECERIFERUM1 (CsCER1), which influences the cuticle properties and drought tolerance of cucumber, plays a key role in VLC alkanes biosynthesis. Plant Mol Biol 87:219–233. doi:10.1007/s11103-014-0271-0

    Article  PubMed  CAS  Google Scholar 

  196. Watanabe KN, Kikuchi A, Shimazaki T, Asahina M (2011) Salt and drought stress tolerances in transgenic potatoes and wild species. Potato Res 54:319–324. doi:10.1007/s11540-011-9198-x

    Article  CAS  Google Scholar 

  197. Weisz R, Kaminski J, Smilowitz Z (1994) Water deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil water for comparison with other crops. Am Potato J 71:829–840. doi:10.1007/BF02849378

    Article  Google Scholar 

  198. Wen X, Moriguchi T (2015) Role of polyamines in stress response in horticultural crops. In: Kanayama Y, Kochetov A (eds) Abiotic stress biology in horticultural plants. Springer, Japan, pp 35–45

    Google Scholar 

  199. Xia H, Camus-Kulandaivelu L, Stephan W et al (2010) Nucleotide diversity patterns of local adaptation at drought-related candidate genes in wild tomatoes. Mol Ecol 19:4144–4154. doi:10.1111/j.1365-294X.2010.04762.x

    Article  CAS  PubMed  Google Scholar 

  200. Xie C, Zhang R, Qu Y et al (2012) Overexpression of MtCAS31 enhances drought tolerance in transgenic arabidopsis by reducing stomatal density. New Phytol 195:124–135. doi:10.1111/j.1469-8137.2012.04136.x

    Article  CAS  PubMed  Google Scholar 

  201. Xu J, Yuan Y, Xu Y et al (2014) Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol 14:83. doi:10.1186/1471-2229-14-83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Xue Y, Warburton ML, Sawkins M et al (2013) Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor Appl Genet 126:2587–2596. doi:10.1007/s00122-013-2158-x

    Article  CAS  PubMed  Google Scholar 

  203. Yang Z, Wu Y, Li Y et al (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229. doi:10.1007/s11103-009-9466-1

    Article  CAS  PubMed  Google Scholar 

  204. Yang J, Zhao X, Liang L et al (2010) Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus. Appl Microbiol Biotechnol 89:1895–1903. doi:10.1007/s00253-010-3012-6

    Article  PubMed  CAS  Google Scholar 

  205. Yang J, Zhao X, Cheng K et al (2012) A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337:1336–1340. doi:10.1126/science.1223702

    Article  CAS  PubMed  Google Scholar 

  206. Yoo CY, Pence HE, Jin JB et al (2010) The arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell 22:4128–4141. doi:10.1105/tpc.110.078691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yu L, Chen X, Wang Z et al (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391. doi:10.1104/pp.113.217596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhan A, Schneider H, Lynch J (2015) Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol, p 00187. doi:10.1104/pp.15.00187

    Google Scholar 

  209. Zhang J-Y, Broeckling CD, Blancaflor EB et al (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707. doi:10.1111/j.1365-313X.2005.02405.x

    Article  CAS  PubMed  Google Scholar 

  210. Zhang X, Zhou S, Fu Y et al (2006) Identification of a drought tolerant introgression line derived from dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol 62:247–259. doi:10.1007/s11103-006-9018-x

    Article  CAS  PubMed  Google Scholar 

  211. Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem and Biophys Res Commun 379:985–989. doi: 10.1016/j.bbrc.2008.12.163

    Google Scholar 

  212. Zhou L, Ni E, Yang J et al (2013) Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS ONE 8:e65139. doi:10.1371/journal.pone.0065139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in our laboratories is supported by the Italian Ministry of University and Research, projects GenoPOM-PRO (PON02_00395_3082360) and GenHORT (PON02_00395_3215002). S.L. and P.P. acknowledge the support of the training course, “Application of genomic and bioinformatics tools to plant breeding” organized by the University of Naples “Federico II.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Grillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Oosten, M.J. et al. (2016). Genetics of Drought Stress Tolerance in Crop Plants. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-32423-4_2

Download citation

Publish with us

Policies and ethics