Skip to main content

Prebiotics, Probiotics, Synbiotics and Foods with Regard to Bone Metabolism

  • Chapter
  • First Online:
Book cover Nutritional Influences on Bone Health

Abstract

Prebiotics beneficially affect the host’s health, inter alia the mineral metabolism and bone health in experimental animals and humans. This is due to several factors, including the habitual diet. Differing beneficial effects on bone by specific prebiotics can be explained by their distinctive and characteristic fermentation profile, showing that e.g. a prebiotic mixture containing acacia gum leads to a more harmonized fermentation than oligofructose alone. The reason may be a higher and more consistent yield of energy and nutrients for the gut microbiota. Moreover, it has been shown that the antioxidative potential of prebiotics varies, and that several non-digestible oligosaccharides (NDOs) affect the relative bacterial proportion differently.

Apart from several reported health outcomes probiotics have been shown to support the host’s bone health which seems plausible since microbiota is associated with bone mass. Probiotics target the intestine and its digestive function, immune regulation, and anti-inflammatory defense. The reduced expressions of bone resorbing cytokines after some defined probiotics contribute to alleviate osteoporosis in animal models showing that there exists a link between osteoporosis and inflammation. Inconsistency of in vivo effects under this aspect can be explained by differential innate microbiota and immune status of study participants. Recent investigations have shown that some selected probiotic bacteria are able to reduce osteoclastogenesis and inflammation, and to decrease osteoporosis and periodontitis. Effects of synbiotics on bone health are less frequent. Furthermore, it is more complex to conclude whether synbiotics have positive effects on bone health, because this has to be investigated individually for each synbiotic combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adolphi B1, Scholz-Ahrens KE, de Vrese M, Açil Y, Laue C, Schrezenmeir J. Short-term effect of bedtime consumption of fermented milk supplemented with calcium, inulin-type fructans and caseinphosphopeptides on bone metabolism in healthy, postmenopausal women. Eur J Nutr. 2009;48(1):45–53. doi: 10.1007/s00394-008-0759-y. Epub 2008 Nov 21.

    Google Scholar 

  2. Abrams SA. Calcium turnover and nutrition through the life cycle. Proc Nutr Soc. 2001;60(2):283–9.

    CAS  PubMed  Google Scholar 

  3. Aljewicz M, Cichosz G. The effect of probiotic Lactobacillus rhamnosus HN001 on the in vitro availability of minerals from cheeses and cheese-like products. LWT-Food Sci Technol. 2015;60:841–7.

    Article  CAS  Google Scholar 

  4. Bergillos-Meca T, Navarro-Alarcon M, Cabrera-Vique C, Artacho R, Giménez R, Moreno-Montoro M, Ruiz-Bravo A, Lasserrot A, Ruiz-López MD. The probiotic bacterial strain Lactobacillus fermentum D3 increases in vitro the bioavailability of Ca, P, and Zn in fermented goat milk. Biol Trace Elem Res. 2013;151:307–14.

    Article  CAS  PubMed  Google Scholar 

  5. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bron PA, van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol. 2012;10:66–78.

    CAS  Google Scholar 

  7. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, Zárate Rodriguez JG, Rogers AB, Robine N, Loke P, Blaser MJ. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding C, Parameswaran V, Udayan R, Burgess J, Jones G. Circulating levels of inflammatory markers predict change in bone mineral density and resorption in older adults: a longitudinal study. J Clin Endocrinol Metab. 2008;93:1952–8.

    Article  CAS  PubMed  Google Scholar 

  9. Eriksson AL, Moverare-Skrtic S. High-sensitivity CRP is an independent risk factor for all fractures and vertebral fractures in elderly men: the MrOS Sweden Study. J Bone Miner Res. 2014;29(2):418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Espinosa-Martos I, Rico E, Ruperez P. Note. Low molecular weight carbohydrates in foods usually consumed in Spain. Food Sci Tech Intl. 2006;12:171–5.

    Article  CAS  Google Scholar 

  11. Ilich JZ, Kelly OJ, Kim Y, Spicer MT. Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis. Arh Hig Rada Toksikol. 2014;65:139–48.

    Article  CAS  PubMed  Google Scholar 

  12. Jovanovic-Malinovska R, Kuzmanova S, Winkelhausen E. Oligosaccharide profile in fruits and vegetables as sources of prebiotics and functional foods. Intl J Food Prop. 2014;17:949–65.

    Article  CAS  Google Scholar 

  13. Koh JM, Lee YS, Kim YS, Kim DJ, Kim HH, Park JY, Lee KU, Kim GS. Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Miner Res. 2006;21(7):1003–11.

    Article  CAS  PubMed  Google Scholar 

  14. Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29(4):403–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maekawa T, Hajishengallis G. Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J Periodontal Res. 2014;49:785–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marzorati M, Qin B, Hildebrand F, Klosterbuer A, Roughead Z, Roessle C, Rochat F, Raes J, Possemiers S. Addition of acacia gum to a FOS/inulin blend improves its fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J Funct Foods. 2015;16:211–22.

    Article  CAS  Google Scholar 

  18. Messina V. Nutritional and health benefits of dried beans. Am J Clin Nutr. 2014;100:437S–42.

    Article  CAS  PubMed  Google Scholar 

  19. Moongngarm A, Trachoo N, Sirigungwan N. Low molecular weight carbohydrates, prebiotic content, and prebiotic activity of selected food plants in Thailand. Adv J Food Sci Tech. 2011;3:269–74.

    CAS  Google Scholar 

  20. Muir JG, Shepherd SJ, Rosella O, Rose R, Barrett JS, Gibson PR. Fructan and free fructose content of common Australian vegetables and fruit. J Agric Food Chem. 2007;55:6619–27.

    Article  CAS  PubMed  Google Scholar 

  21. Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I, Chung J, Sohn J, Barber CM, Goldfarb DS, Raju K, Abubucker S, Zhou Y, Ruiz VE, Li H, Mitreva M, Alekseyenko AV, Weinstock GM, Sodergren E, Blaser MJ. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun. 2015;30:7486.

    Article  Google Scholar 

  22. Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26:69–74.

    Article  CAS  PubMed  Google Scholar 

  23. Ohlsson C, Engdahl C, Fåk F, Andersson A, Windahl SH, Farman HH, Movérare-Skrtic S, Islander U, Sjögren K. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 2014;9, e92368.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perez-Conesa D, Lopez G, Abellan P, Ros G. Bioavailability of calcium, magnesium and phosphorus in rats fed probiotic, prebiotic and synbiotic powder follow-up infant formulas and their effect on physiological and nutritional parameters. J Sci Food Agric. 2006;86:2327–36.

    Article  CAS  Google Scholar 

  25. Rios-Covian D, Arboleya S, Hernandez-Barranco AM, Alvarez-Buylla JR, Ruas-Madiedo P, Gueimonde M, De los Reyes-Gavilan CG. Interactions between bifidobacterium and bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl Environ Microbiol. 2013;79:7518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104 Suppl 2:S1–63. doi:10.1017/S0007114510003363.

    Article  CAS  PubMed  Google Scholar 

  27. Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-Nuñez VM. Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord. 2007;8:124.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schaafsma G, Slavin JL. Significance of inulin fructans in the human diet. Compr Rev Food Sci Food Saf. 2015;14:37–47.

    Article  CAS  Google Scholar 

  29. Scholz-Ahrens KE. Osteoporose – Prävention durch Ernährung. In: Erbersdobler HF, Meyer AH, editors. Praxishandbuch Functional Food 11 09 51. Behr’s Verlag Hamburg; chapter I-10.1, p. 1–44.

    Google Scholar 

  30. Scholz-Ahrens KE. Vitamin D zur Prävention von Osteoporose und Periodontitis. DLG-Expertenwissen 1-4. 2014. http://www.dlg.org/fileadmin/downloads/food/Expertenwissen/Ernaehrung/2014_2_Expertenwissen_Vitamin_D.pdf.

  31. Scholz-Ahrens KE, Acil Y, Schrezenmeir J. Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. Br J Nutr. 2002;88(4):365–77.

    Article  CAS  PubMed  Google Scholar 

  32. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Açil Y, Glüer CC, Schrezenmeir J. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr. 2007;137:838S–46.

    CAS  PubMed  Google Scholar 

  33. Scholz-Ahrens KE, Adolphi B, Rochat F, Barclay DV, de Vrese B, Açil Y, Schrezenmeir J. Effects of probiotics, prebiotics, and synbiotics on mineral metabolism in ovariectomized rats—impact of bacterial mass, intestinal absorptive area and reduction of bone turn-over. NFS Journal 2016;3:41–50.

    Google Scholar 

  34. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F, Ohlsson C. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27:1357–67.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5:1417–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stoyanova S, Geuns J, Hideg E, Van den Ende W. The food additives insulin and stevioside counteract oxidative stress. Int J Food Sci Nutr. 2011;62:207e214.

    Article  Google Scholar 

  37. Van den Ende W, Peshev D, De Gara L. Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends Food Sci Tech. 2011;22:689–97.

    Article  Google Scholar 

  38. Vitali B, Ndagijimana M, Cruciani F, Carnevali P, Candela M, Guerzoni ME, Brigidi P. Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol. 2010;10:4.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vondruskova H, Slamova R, Trckova M, Zraly Z, Pavlik I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Vet Med. 2010;55:199–224.

    CAS  Google Scholar 

  40. de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1–66.

    PubMed  Google Scholar 

  41. Vulevic J, Juric A, Walton GE, Claus SP, Tzortzis G, Toward RE, Gibson GR. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br J Nutr. 2015;114:586–95.

    Article  CAS  PubMed  Google Scholar 

  42. Weaver CM, Martin BR, Story JA, Hutchinson I, Sanders L. Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. J Agric Food Chem. 2010;58:8952–7.

    Article  CAS  PubMed  Google Scholar 

  43. Whisner CM, Martin BR, Nakatsu CH, McCabe GP, McCabe LD, Peacock M, Weaver CM. Soluble maize fibre affects short-term calcium absorption in adolescent boys and girls: a randomised controlled trial using dual stable isotopic tracers. Br J Nutr. 2014;112:446–56.

    Article  CAS  PubMed  Google Scholar 

  44. Whisner CM, Martin BR, Schoterman MH, Nakatsu CH, McCabe LD, McCabe GP, Wastney ME, van den Heuvel EG, Weaver CM. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr. 2013;110:1292–303.

    Article  CAS  PubMed  Google Scholar 

  45. Zenhom M, Hyder A, de Vrese M, Heller KJ, Roeder T, Schrezenmeir J. Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 3. J Nutr. 2011;141:971–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina E. Scholz-Ahrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scholz-Ahrens, K.E. (2016). Prebiotics, Probiotics, Synbiotics and Foods with Regard to Bone Metabolism. In: Weaver, C., Daly, R., Bischoff-Ferrari, H. (eds) Nutritional Influences on Bone Health. Springer, Cham. https://doi.org/10.1007/978-3-319-32417-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32417-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32415-9

  • Online ISBN: 978-3-319-32417-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics