Skip to main content

Vectorization of multiple-precision arithmetic program and 201,326,000 decimal digits of pi calculation (1988)

  • Chapter
  • First Online:
Book cover Pi: The Next Generation
  • 2310 Accesses

Abstract

Paper 9: Yasumasa Kanada, “Vectorization of multiple-precision arithmetic program and 201,326,000 decimal digits of pi calculation,” ©1988 IEEE. Reprinted, with permission, from Supercomputing 88: Vol II, Science and Applications, 117–128.

Synopsis: In this paper, Yasumasa Kanada describes the computation of π to over 200 million decimal digits on a Hitachi S-820 vector supercomputer in Japan. Kanada employed what he termed the Gauss-Legendre formula, which is very similar to the formulas found by Salamin and Brent, and, for a check, by using Borwein quartic algorithm (the same algorithm earlier employed by Bailey).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, D.H., “The Computation of πi to 29,360,000 Decimal Digits Using Borwein’s Quartically Convergent Algorithm,” Math. Comp., vol. 50, no. 181, pp. 66-88, Jan. 1988.

    Google Scholar 

  2. Borwein, J.M. and Borwein, P.B., Pi and the AGM - A study in Analytic Number Theory and Computational Complexity, A Wiley-Interscience Publication, New York, 1987.

    MATH  Google Scholar 

  3. Borwein, J.M. and Borwein, P.B., “Ramanujan and Pi,” Scientific American, vol. 258, pp. 66-73, Feb. 1988.

    Google Scholar 

  4. Brent, R.P., “Fast Multiple-Precision Evaluation of Elementary Functions,” J. ACM., vol. 23, no. 2, pp. 242-251, April 1976.

    Google Scholar 

  5. Brent, R.P., “Multiple-Precision Zero-Finding Methods and the Complexity of Elementary Function Evaluation,” in Analytic Computational Complexity, ed. Traub, J.F., pp. 151-176, Academic Press, New York, 1976.

    Google Scholar 

  6. Gentleman, W.M. and Sande, G., “Fast Fourier Transforms - For Fun and Profit,” AFIPS Conf. Proc. FJCC, vol. 29, pp. 563-578, Spartan Books, San Francisco, Calif., November 1966.

    Google Scholar 

  7. Kanada, Y., “Statistical Analysis of π up to 200,000,000 Decimal Places,” CCUT-TR-88-02, in preparation, Computer Centre, University of Tokyo, Bunkyo-ku, Yayoi 2-11-16, Tokyo 113, Japan, Nov. 1988

    Google Scholar 

  8. Tamura, Y., Yoshino, S., Ushiro, Y. and Kanada, Y., “Circular Constant - It’s High Speed Calculation Method and Statistics -,” in Proceedings Programming Symposium, in Japanese, Information Processing Society of Japan, Jan. 1984.

    Google Scholar 

  9. Tamura, Y. and Kanada, Y., “Calculation of π to 4,194,293 Decimals Based on the Gauss-Legendre Algorithm,” CCUT-TR-83-01, Computer Centre, University of Tokyo, Bunkyo-ku, Yayoi 2-11-16, Tokyo 113, Japan, May 1983.

    Google Scholar 

  10. Kaneko, T. and Liu, B., “Accumulation of Round-Off Error in Fast Fourier Transforms,” J. ACM., vol. 17, no. 4, pp. 637-654, Oct. 1970.

    Google Scholar 

  11. Knuth, D.E., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1981.

    MATH  Google Scholar 

  12. Laasonen, P., “On the Iterative Solution of the Matrix Equation A X^2 - I = 0,” Math. Tables and Other Aids to Comp., vol. 12, pp. 109-116, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  13. Pathria, R.K., “A Statistical Study of Randomness Among the First 10,000 Digits of π,” Math. Comp., vol. 16, pp. 188–197, 1962.

    MathSciNet  MATH  Google Scholar 

  14. Salamin, E., “Computation of π Using Arithmetic-Geometric Mean,” Math. Comp., vol. 30, no. 135, pp. 565-570, July 1976.

    Google Scholar 

  15. Schönhage, A. and Strassen, V., “Schnelle Multiplikation Grosser Zahlen,” Computing, vol. 7, pp. 281-292, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  16. Schutz, G., “Iterative Berechnung der Reziproken Matrix,” Z. Angew. Math. Mech., vol. 13, pp. 57-59, 1933.

    Article  MATH  Google Scholar 

  17. Shanks, D. and Wrench, Jr. W., “Calculation of π: to 100,000 Decimals,” Math. Comp., vol. 16, pp. 76-79, 1962.

    MathSciNet  MATH  Google Scholar 

  18. Shibata, A., 1982-1983. Private communications

    Google Scholar 

  19. Tamura, Y., “Calculation of π to 2 Million Decimals Using Legendre-Gauss’ Relation,” Proceeding of the International Latitude Observatory of Mizusawa No.22 (in Japanese) in press, Internal Latitude Observatory of Mizusawa, Hoshigaoka-cho 2-12, Mizusawa City, 023 Iwate Prefecture, Japan, 1983.

    Google Scholar 

  20. Ushiro, Y., “Calculation of Multiple-Precision Numbers through Vectorizing Processor,” in Numerical Calculation Workshop, in Japanese, Information Processing Society of Japan, 26-28 May. 1983.

    Google Scholar 

  21. Kanada, Y., Tamura, Y., Yoshino, S. and Ushiro, Y., “Calculation of π to 10,013,395 Decimal Places Based on the Gauss-Legendre Algorithm and Gauss Arctangent Relation,” CCUT-TR-84-01, Computer Centre, University of Tokyo, Bunkyo-ku, Yayoi 2-11-16, Tokyo 113, Japan, Dec 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kanada, Y. (2016). Vectorization of multiple-precision arithmetic program and 201,326,000 decimal digits of pi calculation (1988). In: Pi: The Next Generation. Springer, Cham. https://doi.org/10.1007/978-3-319-32377-0_9

Download citation

Publish with us

Policies and ethics