Model Reduction for Norm Approximation: An Application to Large-Scale Time-Delay Systems

  • Igor Pontes Duff
  • Pierre Vuillemin
  • Charles Poussot-Vassal
  • Corentin Briat
  • Cédric Seren
Chapter
Part of the Advances in Delays and Dynamics book series (ADVSDD, volume 6)

Abstract

The computation of \(\mathscr {H}_2\) and \(\mathscr {H}_{2,\varOmega }\) norms for LTI Time-Delay Systems (TDS) are important challenging problems for which several solutions have been provided in the literature. Several of these approaches, however, cannot be applied to systems of large dimension because of the inherent poor scalability of the methods, e.g., LMIs or Lyapunov-based approaches. When it comes to the computation of frequency-limited norms, the problem tends to be even more difficult. In this chapter, a computationally feasible solution using \(\mathscr {H}_2\) model reduction for TDS, based on the ideas provided in [3], is proposed. It is notably demonstrates on several examples that the proposed method is suitable for performing both accurate model reduction and norm estimation for large-scale TDS.

References

  1. 1.
    A.-C. Antoulas, Approximation of Large-Scale Dynamical Systems (SIAM, 2005)Google Scholar
  2. 2.
    A.-C. Antoulas, An overview of model reduction methods and a new result, in IEEE Conference on Decision and Control (CDC) (2009)Google Scholar
  3. 3.
    C. Beattie, S. Gugercin, Realization-independent \({\cal H}_2\)-approximation, in IEEE Conference on Decision and Control (CDC) (2012)Google Scholar
  4. 4.
    G. Flagg, C. Beattie, S. Gugercin, Convergence of the iterative rational Krylov algorithm. Syst. Control Lett. 61(6), 688–691 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhäuser, 2003)Google Scholar
  6. 6.
    S. Gugercin, A.C. Antoulas, C. Beattie, \({\cal H}_2\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008)Google Scholar
  7. 7.
    S. Gugercin, C. Beattie, A.-C. Antoulas, Rational Krylov methods for optimal \({\cal H}_2\) model reduction. ICAM Technical report (2006)Google Scholar
  8. 8.
    Y. Halevi, Frequency weighted model reduction via optimal projection. IEEE Trans. Autom. Control 37(10), 1537–1542 (1992)Google Scholar
  9. 9.
    A. Ionita, A. Antoulas, Data-driven parametrized model reduction in the Loewner framework. SIAM J. Sci. Comput. 36(3), A984–A1007 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    E. Jarlebring, K. Meerbergen, W. Michiels, Computing a partial Schur factorization of nonlinear eigenvalue problems using the infinite Arnoldi method. SIAM J. Matrix Anal. Appl. 35(2), 411–436 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    E. Jarlebring, J. Vanbiervliet, W. Michiels, Characterizing and computing the norm of time-delay systems by solving the delay Lyapunov equation. IEEE Trans. Autom. Control 56(4), 814–825 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    F. Leibfritz, W. Lipinski, Description of the benchmark examples in compleib 1.0. Technical report. Department Mathematics, University of Trier, Germany (2003)Google Scholar
  13. 13.
    C. Magruder, C. Beattie, S. Gugercin, Rational Krylov methods for optimal \({\cal L}_2\) model reduction, in IEEE Conference on Decision and Control (CDC) (2010)Google Scholar
  14. 14.
    A.-J. Mayo, A.-C. Antoulas, A framework for the solution of the generalized realization problem. Linear Algebra Appl. 425(2), 634–662 (2007)Google Scholar
  15. 15.
    S.I. Niculescu, Delay Effects on Stability. A Robust Control Approach (Springer, Heidelberg, 2001)Google Scholar
  16. 16.
    I. Pontes Duff, P. Vuillemin, C. Poussot-Vassal, C. Seren, C. Briat, Large-scale time delay systems stability analysis by model approximation techniques (submitted)Google Scholar
  17. 17.
    C. Poussot-Vassal, P. Vuillemin, Introduction to MORE: a MOdel REduction toolbox, in IEEE International Conference on Control Applications (ICCA) (2012)Google Scholar
  18. 18.
    J.-P. Richard, Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)Google Scholar
  19. 19.
    J. Rommes, N. Martins, Efficient computation of multivariable transfer function dominant poles using subspace acceleration. IEEE Trans. Power Syst. 21(4), 1471–1483 (2006)CrossRefGoogle Scholar
  20. 20.
    J.T. Spanos, M.H. Milman, D.L. Mingori, A new algorithm for \(\fancyscript {L}_2\) optimal model reduction. Automatica 28(5), 897–909 (1992)Google Scholar
  21. 21.
    R. Van Beeumen, K. Meerbergen, W. Michiels, A rational Krylov method based on hermite interpolation for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 35(1), A327–A350 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    P. Van Dooren, K.-A. Gallivan, P.-A. Absil, \({\cal H}_2\)-optimal model reduction of MIMO systems. Appl. Math. Lett. 21(12), 1267–1273 (2008)Google Scholar
  23. 23.
    P. Vuillemin, C. Poussot-Vassal, D. Alazard, Poles residues descent algorithm for optimal frequency-limited \({\cal H}_2\) model approximation, in European Control Conference (ECC) (2014)Google Scholar
  24. 24.
    P. Vuillemin, C. Poussot-Vassal, D. Alazard, Spectral expression for the frequency-limited \({\cal H}_2\)-norm of LTI dynamical systems with high order poles, in European Control Conference (ECC) (2014)Google Scholar
  25. 25.
    P. Vuillemin, C. Poussot-Vassal, D. Alazard, Two upper bounds on the \({\cal H}_{\infty }\)-norm of LTI dynamical systems, in IFAC World Congress (2014)Google Scholar
  26. 26.
    D.A. Wilson, Optimum solution of model-reduction problem. Proc. Inst. Electr. Eng. 117(6), 1161–1165 (1970)Google Scholar
  27. 27.
    P. Zitek, T. Vyhlídal, Rating the significance of infinite chains of poles in time-delay systems, in IFAC World Congress (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Igor Pontes Duff
    • 1
  • Pierre Vuillemin
    • 1
  • Charles Poussot-Vassal
    • 1
  • Corentin Briat
    • 2
  • Cédric Seren
    • 1
  1. 1.Onera-French Aerospace LabToulouseFrance
  2. 2.Department of Biosystems Science and Engineering (D-BSSE)The Swiss Federal Institute of Technology–Zürich (ETH-Z)ZurichSwitzerland

Personalised recommendations