Skip to main content

Design and Analysis of Reset Strategy for Consensus in Networks with Cluster Pattern

  • Chapter
  • First Online:
Delays and Networked Control Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 6))

  • 1068 Accesses

Abstract

This chapter addresses the problem of consensus in networks partitioned in several disconnected clusters. Each cluster is represented by a fixed, directed, and strongly connected graphs. In order to enforce the consensus, we assume that each cluster poses a leader that can reset its state by taking into account other leaders state. First, we characterize the consensus value of this model. Second, we provide sufficient condition in LMI form for the stability of the consensus. Finally, we perform a decay rate analysis and design the interaction network of the leaders which allows to reach a prescribed consensus value.

I.-C. Morărescu—This work was funded by the ANR project COMPACS—“Computation Aware Control Systems”, ANR-13-BS03-004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Hegselmann, U. Krause: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3) (2002)

    Google Scholar 

  2. O. Ratmann, C. Wiuf, J.W. Pinney, From evidence to inference: probing the evolution of protein interaction networks. HFSP J. 3(5), 290–306 (2009)

    Article  Google Scholar 

  3. D. Gfeller, P. De Los, Rios: spectral coarse graining and synchronization in oscillator networks. Phys. Rev. Lett. 100, 174104 (2008)

    Article  Google Scholar 

  4. V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J Stat. Mech: Theory Exp. P10008(10) (2008)

    Google Scholar 

  5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  6. I. Hanski, Metapopulation dynamics. Nature 396, 41–49 (1998)

    Article  Google Scholar 

  7. I.-C. Morărescu, A. Girard, Opinion dynamics with decaying confidence: application to community detection in graphs. IEEE Trans. Autom. Control 56(8), 1862–1873 (2011)

    Article  MathSciNet  Google Scholar 

  8. M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  9. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Google Scholar 

  10. A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  11. L. Moreau, Stability of multi-agent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  12. I.-C. Morărescu, S.-I. Niculescu, A. Girard, Consensus with constrained convergence rate and time-delays. in IFAC Worksop on Time-Delay Systems (TDS) (2010)

    Google Scholar 

  13. R. Olfati-Saber, J.A. Fax, R.M. Murray, Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  14. R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  15. W. Ren, R.W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  16. A. Olshevsky, J.N. Tsitsiklis, Convergence speed in distributed consensus and averaging. SIAM J. Control Optim. 48(1), 33–55 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Xiao, S. Boyd, Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Touri, A. Nedic, On approximations and ergodicity classes in random chains. IEEE Trans. Autom. Control 57(11), 2718–2730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Fiacchini, I.-C. Morărescu, Set theory based condition in LMI form for network topology preservation for decentralized control. in IEEE Conference on Decision and Control (CDC) (2012)

    Google Scholar 

  20. M.M. Zavlanos, G.J. Pappas, Distributed connectivity control of mobile networks. IEEE Trans. Robot. 24(6), 1416–1428 (2008)

    Article  Google Scholar 

  21. B.D.O. Anderson, C. Yu, A.S. Morse, in Convergence of Periodic Gossiping Algorithms (Springer, 2010)

    Google Scholar 

  22. T.C. Aysal, M.E. Yildriz, A.D. Sarwate, A. Scaglione, Broadcast gossip algorithms for consensus. IEEE Trans. Sig. Process. 57, 2748–2761 (2009)

    Article  MathSciNet  Google Scholar 

  23. S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Liu, B.D.O. Anderson, M. Cao, A.S. Morse, Analysis of accelerated gossip algorithms. inIEEE Conference on Decision and Control (CDC) (2009)

    Google Scholar 

  25. M.C. Bragagnolo, I.C. Morărescu, J. Daafouz, P. Riedinger, LMI sufficient conditions for the consensus of linear agents with nearly-periodic resets. in IEEE American Control Conference (ACC) (2014)

    Google Scholar 

  26. A. Banos, J. Carrasco, A. Barreiro, Reset times-dependent stability of reset control systems. IEEE Trans. Autom. Control 56(1), 217–223 (2011)

    Article  MathSciNet  Google Scholar 

  27. O. Beker, C.V. Hollot, Y. Chait, Plant with an integrator: an example of reset control overcoming limitations of linear feedback. IEEE Trans. Autom. Control 46(11), 1797–1799 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Nes̆ić, L. Zaccarian, A.R. Teel, Stability properties of reset systems. Automatica 44, 2019–2026 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Hetel, J. Daafouz, S. Tarbouriech, C. Prieur, Stabilization of linear impulsive systems through a nearly-periodic reset. Nonlinear Anal: Hybrid Syst. 7, 4–15 (2013)

    MathSciNet  MATH  Google Scholar 

  30. T. Yucelen, W.M. Haddad, E.N. Johnson, Consensus protocols for networked multiagent systems with a uniformly continuous quasi-resetting architecture. in IEEE American Control Conference (ACC) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Cesar Bragagnolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bragagnolo, M.C., Morărescu, IC., Daafouz, J., Riedinger, P. (2016). Design and Analysis of Reset Strategy for Consensus in Networks with Cluster Pattern. In: Seuret, A., Hetel, L., Daafouz, J., Johansson, K. (eds) Delays and Networked Control Systems . Advances in Delays and Dynamics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-32372-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32372-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32371-8

  • Online ISBN: 978-3-319-32372-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics