Skip to main content

Structure Formation within Spray-Dried Droplets; Mathematical Modelling of Spray Polymerisation

  • Chapter
  • First Online:
Process-Spray

Abstract

Spray drying is a basic operation for the manufacturing of small, tailored particles. To obtain a specific porous structure of the particles, usually considerable experimental work is needed. Within this project, we developed a novel approach for modelling single droplet drying which accounts for the morphology evolution inside the particle from first principles. The underlying physical processes affecting structure formation, especially surface tension, wetting, and primary particle interactions, are taken into account within a detailed CFD approach. Simulation of suspension drying makes it necessary to represent the evolution of many interfaces. For that reason, we used the mesh-free simulation method “Smoothed particle hydrodynamics” (SPH), which represents the continuum by interpolation points moving according to a Lagrangian point of view. To our knowledge, SPH has been applied in this field for the first time. Several adaptions to the state of the art had to be made for the application in morphogenesis modelling. For the simulation of diffusion-driven drying, a hybrid simulation method was developed: liquid and solid phases are represented by SPH-particles, whereas a standard grid-based method accounts for the surrounding gas.

Simulations of the drying of suspended particles in a liquid show how the formation of a solid crust in the first drying period is affected by the drying rate and by interaction between liquid with solid particles. During the second drying period, vaporisation takes place: We propose a simple scheme to consider vapour diffusion and boiling and are able to model the formation of a hollow sphere. The receding liquid level in a porous structure has been simulated as well. The model is able to show the effects of surface tension and contact angle on diffusion-driven drying. All simulation results are 2D only, but agree qualitatively with experimental findings. Extension of our model to 3D is straight forward, but requires code parallelisation.

Spray polymerisation can be seen as an extension of spray drying in which the solid is formed by polymerisation reactions. Literature models of spray polymerisation treat droplets as fully mixed. Mathematical models accounting for spatial resolution are lacking. Based on established droplet drying approaches, we derived a 1D model for reactive spray drying processes with special emphasis on polymerisation reactions. Polymer properties, such as the chain length distribution, are represented by moments. Using the Maxwell-Stefan diffusion approach, we derived an advanced formulation for spatial transport of moments that accounts for the low mobility of the polymer chains. The molar mass distribution of the polymer can be simulated along the radius as a function of reaction rate, transport parameters, and operation conditions. Moreover, it can be shown that, against common assumptions respecting spray polymerisation, drying and chemical reactions are rather subsequent than concurrent processes. As a consequence, polymerisation reactions are typically performed as bulk polymerisation within the spray.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α :

Heat transfer coefficient [W m−2]

β :

Mass transfer coefficient [kg m−2]

c :

Colour function [variable]

Concentration [mol m−3]

c p :

Specific heat [J kg−1 K−1]

D :

Diffusion coefficient [m2 s−1]

δ :

Dirac delta function [m−3]

f :

Arbitrary quantity [variable]

f :

Acceleration due to external force [m s−2]

h :

Smoothing length [m]

Δh ev :

Specific heat of evaporation [J kg−1]

J N :

Molar diffusive flux [mol m−2 s−1]

k :

Reaction constant [variable]

k d :

Receeding rate in simplified drying model [kg m−2]

l :

Particle spacing [m]

λ :

Heat conductivity [W m−1 K−1]

λ k :

kth moment [mol m−3]

MW:

Molar weight [kg mol−1]

Μ :

Dynamic viscosity [Pa s]

Ω j N :

Molar flux of component j due to evaporation [mol m−2 s−1]

p :

Pressure [Pa]

p v :

Vapour pressure [Pa]

[P s ]:

Concentration of polymer with chainlength s [mol m−3]

φ :

Water content in vicinity SPH particle [−]

r :

Distance between particle [m]

Radial coordinate [m]

r j F :

Rate of formation for component j

r cutoff :

Cutoff radius for SPH neighbourhood

R :

General gas constant [8.315 J mol−1 K−1]

Droplet outer radius [m]

ρ :

Density [kg m−3]

s :

Interaction strength in pairwise forces (with index l for liquid, s for solid) [−]

t :

Time [s]

T :

Temperature [°C, K]

T boil :

Boiling temperature [°C]

θ :

Contact angle [°]

x :

Molar fraction [−]

x :

Position vector [m]

v :

Velocity vector [m s−1]

V :

Volume [m3]

w :

Mass fraction [−]

W :

Kernel function [m−3]

A:

Area-based

D:

Superscript for diffusive

i, j :

Particle indices

j :

Component index

N:

Superscript for molar

R:

Superscript for reaction related

V:

Volume-based

0:

Index for initial conditions/setup or for reference value

∞:

Index for surrounding gas, bulk

I:

Initiator

IC:

Consumed initiator

M:

Monomer

P:

Polymer (dead chain)

R:

Polymer (living chain, radical)

S:

Solvent

References

  1. Eckhard, S., Fries, M., Teipel, U., Antonyuk, S., & Heinrich, S. (2014). Modification of the mechanical granule properties via internal structure. Powder Technology, 258, 252–264.

    Article  Google Scholar 

  2. Mezhericher, M., Levy, A., & Borde, I. (2010). Theoretical models of single droplet drying kinetics: A review. Drying Technology, 28, 278–293.

    Article  Google Scholar 

  3. Handscomb, C. S., & Kraft, M. (2010). Simulating the structural evolution of droplets following shell formation. Chemical Engineering Science, 65, 713–725.

    Article  Google Scholar 

  4. Mezhericher, M., Levy, A., & Borde, I. (2011). Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage. Chemical Engineering Science, 66, 884–896.

    Article  Google Scholar 

  5. Krüger, M. (2004). Sprühpolymerisation: Aufbau und Untersuchung von Modellverfahren zur kontinuierlichen Gleichstrom-Sprühpolymerisation. Wissenschaft & Technik Verlag. ISBN 3-89685-204-3.

    Google Scholar 

  6. Ito, S. -I., & Yukawa, S. (2012). Dynamical scaling of fragment distribution in drying paste. ArXiv e-prints 1209.6114v1.

    Google Scholar 

  7. Karunasena, H. C. P., Senadeera, W., Gu, Y. T., & Brown, R. J. (2014). A coupled SPH-DEM model for micro-scale structural deformations of plant cells during drying. Applied Mathematical Modelling, 38, 3781–3801.

    Article  Google Scholar 

  8. Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. Astronomy Journal, 82, 1013–1024.

    Article  Google Scholar 

  9. Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181, 375–389.

    Article  Google Scholar 

  10. Monaghan, J. J. (1994). Simulating free surface flows with SPH. Journal of Computational Physics, 110, 399–406.

    Article  Google Scholar 

  11. Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, 30, 543–574.

    Article  Google Scholar 

  12. Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on Progress in Physics, 68, 1703–1759.

    Article  Google Scholar 

  13. Benz, W. (1990). Smooth particle hydrodynamics—A review. In Numerical modelling of nonlinear stellar pulsations problems and prospects. Dordrecht: Kluwer Academic. ISBN 978-94-009-0519-1.

    Google Scholar 

  14. Säckel, W., Keller, F., & Nieken, U. (2010). Simulation der Verdampfung von Einzeltropfen mit Hilfe gitterfreier Simulationsmethoden, 9. Workshop über Sprays, Techniken der Fluidzerstäubung und Untersuchungen von Sprühvorgängen SPRAY, Heidelberg, Germany, 3–5 May, 2010.

    Google Scholar 

  15. Säckel, W., Keller, F., & Nieken, U. (2010). Modeling of spray drying processes using meshfree simulation methods. In 17th International Drying Symposium IDS, Magdeburg, Germany, 3–6 Oct, 2010.

    Google Scholar 

  16. Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100, 335–354.

    Article  Google Scholar 

  17. Morris, J. P. (2000). Simulating surface tension with smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, 33, 333–353.

    Article  Google Scholar 

  18. Cleary, P. W., & Monaghan, J. J. (1999). Conduction modelling using smoothed particle hydrodynamics. Journal of Computational Physics, 148, 227–264.

    Article  Google Scholar 

  19. Keller, F. (2015). Simulation of the morphogenesis of open-porous materials. Berlin: Logos. ISBN 978-3-8325-3962-7.

    Google Scholar 

  20. Shao, S., & Lo, E. Y. M. (2003). Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources, 26, 787–800.

    Article  Google Scholar 

  21. Antuono, M., Colagrossi, A., & Marrone, S. (2012). Numerical diffusive terms in weakly-compressible SPH schemes. Computer Physics Communications, 183, 2570–2580.

    Article  Google Scholar 

  22. Cummins, S. J., & Rudman, M. (1999). An SPH projection method. Journal of Computational Physics, 152, 584–607.

    Article  Google Scholar 

  23. Bøckmann, A., Shipilova, O., & Skeie, G. (2012). Incompressible SPH for free surface flows. Computers and Fluids, 67, 138–151.

    Article  Google Scholar 

  24. Koshizuka, S., Nobe, A., & Oka, Y. (1998). Numerical analysis of breaking waves using the moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 26, 751–769.

    Article  Google Scholar 

  25. Nugent, S., & Posch, H. A. (2000). Liquid drops and surface tension with smoothed particle applied mechanics. Physical Review E, 62, 4968–4975.

    Article  Google Scholar 

  26. Tartakovsky, A. M., & Meakin, P. (2005). Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical Review E, 72, 026301.

    Article  Google Scholar 

  27. Kondo, M., Koshizuka, S., Suzuki, K., & Takimoto, M. (2007). Surface tension model using inter-particle force in particle method. ASME Conference Proceedings, 2007, 93–98.

    Google Scholar 

  28. Säckel, W., Keller, F., & Nieken, U. (2012). Modelling of single droplet drying and morphology evolution using meshfree simulation methods. In 12th International Conference of Liquid Atomisation and Spray Systems ILASS, Heidelberg, Germany, 2–6 Sept, 2012.

    Google Scholar 

  29. Nesic, S., & Vodnik, J. (1991). Kinetics of droplet evaporation. Chemical Engineering Science, 46, 527–537.

    Article  Google Scholar 

  30. Säckel, W., Huber, M., Hirschler, M., Kunz, P., & Nieken, U. (2014) Drying and morphology evolution of single droplets in spray processes. In 9th SPHERIC International Workshop, Paris, France, 3–5 June, 2014.

    Google Scholar 

  31. Walag, K. (2011). Modellierung der Mikropolymerisation im Turmreakor. Wissenschaft & Technik Verlag. ISBN 978-3-89685-226-7.

    Google Scholar 

  32. Reinhold, M. (2001). Theoretische und experimentelle Untersuchungen zur Sprühtrocknung mit überlagerter chemischer Reaktion. Maastricht: Shaker. ISBN 978-3-8265-9023-8.

    Google Scholar 

  33. Säckel, W., & Nieken, U. (2013). On the modelling of reactive spray drying processes. In 6th Nordic Drying Conference NDC, Kopenhagen, Denmark, 5–7 June, 2013.

    Google Scholar 

  34. Säckel, W., & Nieken, U. (2014). Modellierung reaktiver Sprühtrocknungsprozesse am Beispiel der Sprühpolymerisation. Chemie Ingenieur Technik, 86, 438–448.

    Article  Google Scholar 

  35. Ray, W. H. (1972). On the mathematical modeling of polymerization reactors. Polymer Reviews, 8, 1–56.

    Google Scholar 

  36. Hutchinson, R. A. (2005). Free-radical polymerization: Homogeneous. In Handbook of polymer reaction engineering. New York: Wiley-VCH. ISBN 978-3527310142.

    Google Scholar 

  37. Brenn, G. (2004). Concentration fields in drying droplets. Chemical Engineering and Technology, 27, 1252–1258.

    Article  Google Scholar 

  38. Sloth, J., Kiil, S., Jensen, A. D., Andersen, S. K., Jørgensen, K., Schiffter, H., et al. (2006). Model based analysis of the drying of a single solution droplet in an ultrasonic levitator. Chemical Engineering Science, 61, 2701–2709.

    Article  Google Scholar 

  39. Seydel, P. (2005). Modellierung der Feststoffbildung in Einzeltropfen bei der Sprühtrocknung. Ruhr-Universität Bochum.

    Google Scholar 

  40. Czaputa, K., & Brenn, G. (2012). The convective drying of liquid films on slender wires. International Journal of Heat and Mass Transfer, 55, 19–31.

    Article  Google Scholar 

  41. Ariola, D. J. (1989) Modeling of addition polymerization systems. University of Wisconsin.

    Google Scholar 

  42. Hirsch, C. (1990). Numerical computation of internal and external flows. New York: Wiley. ISBN 978-0471924524.

    Google Scholar 

  43. van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14, 361–370.

    Article  Google Scholar 

  44. Wittenberg, N. F. G. (2013). Kinetics and modeling of the radical polymerization of acrylic acid and of methacrylic acid in aqueous solution. Georg-August-Universität Göttingen.

    Google Scholar 

  45. Sedelmayer, R. (2013). Institut für Technische und Makromolekulare Chemie, Universität Hamburg, Germany (personal communication).

    Google Scholar 

  46. Halfar, A. H., Säckel, W., Rüsch, S., Pauer, W., & Moritz, H.-U. (2015). Kinetische Untersuchungen in Einzeltropfen zur Prozessintensivierung der Sprühpolymerisation, Jahrestreffen der Fachgruppen Trocknungstechnik und Wärme- und Stoffübertragung, Leipzig, Germany, 3–5 March, 2015.

    Google Scholar 

  47. Kannan, D. C., Duda, J. L., & Danner, R. P. (2005). A free-volume term based on the van der Waals partition function for the UNIFAC model (pp. 228–229, 321–328). PPEPPD 2004 Proceedings.

    Google Scholar 

  48. Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2000). The properties of gases and liquids. New York: McGraw-Hill. ISBN 978-0070116825.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Nieken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Säckel, W., Nieken, U. (2016). Structure Formation within Spray-Dried Droplets; Mathematical Modelling of Spray Polymerisation. In: Fritsching, U. (eds) Process-Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-32370-1_3

Download citation

Publish with us

Policies and ethics