Skip to main content

Spray Drying Tailored Mannitol Carrier Particles for Dry Powder Inhalation with Differently Shaped Active Pharmaceutical Ingredients

  • Chapter
  • First Online:
Process-Spray

Abstract

Dry powder inhalation as commonly used in the local therapy of asthma or chronic obstructive pulmonary disease (COPD) is a very effective route of drug delivery. The system of small cohesive drug particles attached to the surface of large carriers with particle sizes >50 μm is successfully applied to numerous marketed products. The performance of these blends is based on the particle properties of both carriers and drug particles and is usually linked to the Fine Particle Fraction (FPF), which represents the fraction of drug particles with an aerodynamic diameter of 1–5 μm, which triggers the desired effect in the lung. Mannitol, which was chosen as an alternative carrier to the market-leading α-lactose monohydrate as it is highly crystalline in contrast to lactose even after spray drying, was prepared by spray drying to generate carrier particles at a range of 50–90 μm with various morphologies. This project was first aiming at the examination of the drying kinetics of bicomponent mannitol water droplets. It could be shown that high drying temperatures cause deep indentations and increasingly rough surface structures, while low drying temperatures result in spherical particles with rough surfaces at very low drying temperatures and smoother ones when increasing temperatures. Low rotation speeds and high mass fractions increase the particle size. Further particle properties like porosity, breaking strength or flowability were related accordingly. A defined set of mannitol batches was further selected for interactive powder blends with a micronised and spray dried quality of the model drug SBS. Particle–particle interactions were then investigated by correlating carrier properties to the resulting FPF. Particle shape was found to hinder the detachment of drug particles. Rough structures dried at the lowest drying temperatures were preferred for micronised drug particles, whereas spherical drug particles were preferably detached from smoother surfaces. This effect could be related to the drug size as only the detachment of the smallest drug particles (<1 μm) tended to be affected by the roughness. Carrier size was found to decrease the FPF for larger particles, when indentations occur simultaneously. Thus, it was possible to customise the carrier properties according to the drug particle properties to finally obtain adhesive drug–carrier mixtures with optimum aerodynamic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bechtold-Peters, K., & Luessen, H. (2007). Pulmonary drug delivery: Basics, applications and opportunities for small molecules and biopharmaceutics: Vol. 2. APV pharma reflexions. Aulendorf: ECV, Ed.-Cantor. ISBN 978-3871933226.

    Google Scholar 

  2. Daniher, D. I., & Zhu, J. (2008). Dry powder platform for pulmonary drug delivery. Particuology, 6(4), 225–238.

    Article  Google Scholar 

  3. Maas, S. G., Schaldach, G., Walzel, P. E., & Urbanetz, N. A. (2010). Tailoring dry powder inhaler performance by modifying carrier surface topography by spray drying. Atomization and Sprays, 20(9), 763–774.

    Article  Google Scholar 

  4. Hanania, N. A. (2008). The impact of inhaled corticosteroid and long-acting beta-agonist combination therapy on outcomes in COPD. Pulmonary Pharmacology & Therapeutics, 21(3), 540–550.

    Article  Google Scholar 

  5. Labiris, N. R., & Dolovich, M. B. (2003). Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. British Journal of Clinical Pharmacology, 56(6), 588–599.

    Article  Google Scholar 

  6. Hickey, A. J. (1993). Lung deposition and clearance of pharmaceutical aerosols: What can be learned from inhalation toxicology and industrial hygiene? Aerosol Science and Technology, 18(3), 290–304.

    Article  Google Scholar 

  7. Council of Europe, Strasbourg. (2013). Pharmacopeia Europaea. Preparations for inhalation (8th ed.). ISBN 978-3769266801.

    Google Scholar 

  8. Cordts, E., & Steckel, H. (2012). Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance. European Journal of Pharmaceutics and Biopharmaceutics, 82(2), 417–423.

    Article  Google Scholar 

  9. Tee, S., Marriott, C., Zeng, X., & Martin, G. P. (2000). The use of different sugars as fine and coarse carriers for aerosolised salbutamol sulphate. International Journal of Pharmaceutics, 208(1–2), 111–123.

    Article  Google Scholar 

  10. Zeng, X. M., Martin, G. P., Marriott, C., & Pritchard, J. (2001). Lactose as a carrier in dry powder formulations: The influence of surface characteristics on drug delivery. Journal of Pharmaceutical Sciences, 90(9), 1424–1434.

    Article  Google Scholar 

  11. Mönckedieck, M., Kamplade, J., Fakner, P., & Steckel, H. (2015). The impact of particle shape on the dry powder inhaler performance of spray dried mannitol carrier particles. Respiratory Drug Delivery Europe, 2, 265–268.

    Google Scholar 

  12. Council of Europe, Strasbourg. (2013). Pharmacopeia Europaea, Section 2.9.18. Aerodynamic assessment of fine particles (8th ed.). ISBN 978-3769266801.

    Google Scholar 

  13. Buckton, G., Yonemochi, E., Hammond, J., & Moffat, A. C. (1998). The use of near infra-red spectroscopy to detect changes in the form of amorphous and crystalline lactose. International Journal of Pharmaceutics, 168(2), 231–241.

    Article  Google Scholar 

  14. Steckel, H., & Bolzen, N. (2004). Alternative sugars as potential carriers for dry powder inhalations. International Journal of Pharmaceutics, 270(1–2), 297–306.

    Article  Google Scholar 

  15. Steckel, H., Markefka, P., te Wierik, H., & Kammelar, R. (2006). Effect of milling and sieving on functionality of dry powder inhalation products. International Journal of Pharmaceutics, 309(1–2), 51–59.

    Article  Google Scholar 

  16. Vollenbroek, J., Hebbink, G. A., Ziffels, S., & Steckel, H. (2010). Determination of low levels of amorphous content in inhalation grade lactose by moisture sorption isotherms. International Journal of Pharmaceutics, 395(1–2), 62–70.

    Article  Google Scholar 

  17. Patton, J. S., & Platz, R. M. (1992). Routes of delivery: Case studies: (2) Pulmonary delivery of peptides and proteins for systemic action. Advanced Drug Delivery Reviews, 8(2), 179–196.

    Article  Google Scholar 

  18. Littringer, E. M., Mescher, A., Eckhard, S., Schröttner, H., Langes, C., Fries, M., et al. (2012). Spray drying of mannitol as a drug carrier—The impact of process parameters on product properties. Drying Technology, 30(1), 114–124.

    Article  Google Scholar 

  19. de Boer, A. H., Dickhoff, B. H. J., Hagedoorn, P., Gjaltema, D., Goede, J., Lambregts, D., et al. (2005). A critical evaluation of the relevant parameters for drug redispersion from adhesive mixtures during inhalation. International Journal of Pharmaceutics, 294(1–2), 173–184.

    Article  Google Scholar 

  20. Price, R., & Young, P. M. (2004). Visualization of the crystallization of lactose from the amorphous state. Journal of Pharmaceutical Sciences, 93(1), 155–164.

    Article  Google Scholar 

  21. Ming Zeng, X., Martin, G. P., Marriott, C., & Pritchard, J. (2001). The use of lactose recrystallised from carbopol gels as a carrier for aerosolised salbutamol sulphate. European Journal of Pharmaceutics and Biopharmaceutics, 51(1), 55–62.

    Article  Google Scholar 

  22. Zeng, X. M., Martin, G. P., Tee, S., & Marriott, C. (1998). The role of fine particle lactose on the dispersion and deaggregation of salbutamol sulphate in an air stream in vitro. International Journal of Pharmaceutics, 176(1), 99–110.

    Article  Google Scholar 

  23. Guchardi, R., Frei, M., John, E., & Kaerger, J. S. (2008). Influence of fine lactose and magnesium stearate on low dose dry powder inhaler formulations. International Journal of Pharmaceutics, 348(1–2), 10–17.

    Article  Google Scholar 

  24. Lefebvre, A. H. (1989). Atomization and sprays (combustion). Bristol: Taylor & Francis/CRC Press. ISBN 978-0891166030.

    Google Scholar 

  25. Kamplade, J., Mack, T., Küsters, A., & Walzel, P. (2014). Break-up of threads from laminar open channel flow influenced by cross-wind gas flow, ASME 03.-07. In 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, August 2014, Chicago, USA.

    Google Scholar 

  26. Mescher, A., Möller, A., Dirks, M., & Walzel, P. (2012). Gravity affected break-up of laminar threads at low gas-relative-velocities. Chemical Engineering Science, 69(1), 181–192.

    Article  Google Scholar 

  27. Mescher, A., Kamplade, J., & Walzel, P. (2013). Spray drying of particles with narrow PSD by LAMROT atomizer and optimized gas distributor. In 25th Annual Conference on Liquid Atomization and Spray Systems ILASS, September 1–4, 2013, Chania, Greece.

    Google Scholar 

  28. Rayleigh, J. (1878). On the instability of jets. Proceedings of the London Mathematical Society, s1–10(1), 4–13.

    Google Scholar 

  29. Mescher, A. (2012). Einfluss der Gasführung in Sprühtrocknern auf den Fadenzerfall an Rotationszerstäubern: Analyse und Optimierung. Techn. Univ., Dissertation—Dortmund, 1. Aufl. Schriftenreihe mechanische Verfahrenstechnik, Vol. 18. Verl. Dr. Hut, München.

    Google Scholar 

  30. de Boer, A. H., Hagedoorn, P., Gjaltema, D., Goede, J., & Frijlink, H. W. (2006). Air classifier technology (ACT) in dry powder inhalation Part 3. Design and development of an air classifier family for the Novolizer multi-dose dry powder inhaler. International Journal of Pharmaceutics, 310(1–2), 72–80.

    Article  Google Scholar 

  31. Littringer, E. M., Paus, R., Mescher, A., Schroettner, H., Walzel, P., & Urbanetz, N. A. (2013). The morphology of spray dried mannitol particles—The vital importance of droplet size. Powder Technology, 239, 162–174.

    Article  Google Scholar 

  32. Littringer, E. M., Noisternig, M. F., Mescher, A., Schroettner, H., Walzel, P., Griesser, U. J., et al. (2013). The morphology and various densities of spray dried mannitol. Powder Technology, 246, 193–200.

    Article  Google Scholar 

  33. Littringer, E. M., Mescher, A., Schroettner, H., Achelis, L., Walzel, P., & Urbanetz, N. A. (2012). Spray dried mannitol carrier particles with tailored surface properties—The influence of carrier surface roughness and shape. European Journal of Pharmaceutics and Biopharmaceutics, 82(1), 194–204.

    Article  Google Scholar 

  34. Kleppmann, W. (2013). Versuchsplanung: Produkte und Prozesse optimieren (Praxisreihe Qualitätswissen 8th ed.). München: Hanser. ISBN 978-3446437524.

    Book  Google Scholar 

  35. Dejaegher, B., & Heyden, Y. V. (2011). Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. Journal of Pharmaceutical and Biomedical Analysis, 56(2), 141–158.

    Article  Google Scholar 

  36. Council of Europe, Straßbourg. (2013). Pharmacopeia Europea, Section 2.9.26. Specific surface area by gas adsorption (8th ed.). ISBN 978-3769266801.

    Google Scholar 

  37. Washburn, E. W. (1921). The dynamics of capillary flow. Physical Review, 17(3), 273–283.

    Article  Google Scholar 

  38. Fronczek, F. R., Kamel, H. N., & Slattery, M. (2003). Three polymorphs (alpha, beta, and delta) of D-mannitol at 100 K. Acta Crystallographica. Section C, 59(Pt 10), 567–570.

    Google Scholar 

  39. Gopireddy, S. R., & Gutheil, E. (2013). Numerical simulation of evaporation and drying of a bi-component droplet. International Journal of Heat and Mass Transfer, 66, 404–411.

    Article  Google Scholar 

  40. Brenn, G., Deviprasath, L. J., & Durst, F. (2003). Computations and experiments on the evaporation of multi-component droplets. In Kickoff Meeting Conex Project, October 30–November 1, 2003, Sofia, Bulgaria.

    Google Scholar 

  41. Gopireddy, S. R. (2013). Numerical simulation of bi-component droplet evaporation and dispersion in spray and spray drying. Univ., Diss., Heidelberg.

    Google Scholar 

  42. Fritsche, C., Koller, E. (2009). Büchi Mini Spray Dryer B-290 - User Manual,Büchi Labortechnik AG, Flawil, Switzerland.

    Google Scholar 

  43. Zellnitz, S., Narygina, O., Resch, C., Schroettner, H., & Urbanetz, N. A. (2015). Crystallization speed of salbutamol as a function of relative humidity and temperature. International Journal of Pharmaceutics, 489(1–2), 170–176.

    Article  Google Scholar 

  44. Müller, T., Krehl, R., Schiewe, J., Weiler, C., & Steckel, H. (2015). Influence of small amorphous amounts in hydrophilic and hydrophobic APIs on storage stability of dry powder inhalation products. European Journal of Pharmaceutics and Biopharmaceutics, 92, 130–138.

    Article  Google Scholar 

  45. Littringer, E. M., Zellnitz, S., Hammernik, K., Adamer, V., Friedl, H., & Urbanetz, N. A. (2013). Spray drying of aqueous salbutamol sulfate solutions using the nano spray dryer B-90—The impact of process parameters on particle size. Drying Technology, 31(12), 1346–1353.

    Article  Google Scholar 

  46. Mönckedieck, M., Kamplade, J., Walzel, P., Urbanetz, N., Steckel, H. & Scherließ, R. (2015). Influence of mannitol carrier morphology on the DPI performance of different APIs. In Drug Delivery to the Lungs 26, DDL26, December 9–11, 2015, Edinburgh, Scotland.

    Google Scholar 

  47. Kann, B., & Windbergs, M. (2013). Chemical imaging of drug delivery systems with structured surfaces—A combined analytical approach of confocal Raman microscopy and optical profilometry. The AAPS Journal, 15(2), 505–510.

    Article  Google Scholar 

  48. de Boer, A. H., Hagedoorn, P., Gjaltema, D., Goede, J., & Frijlink, H. W. (2006). Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler. International Journal of Pharmaceutics, 310(1–2), 81–89.

    Article  Google Scholar 

  49. Maas, S. G., Schaldach, G., Littringer, E. M., Mescher, A., Griesser, U. J., Braun, D. E., et al. (2011). The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder Technology, 213(1–3), 27–35.

    Article  Google Scholar 

  50. Vehring, R. (2008). Pharmaceutical particle engineering via spray drying. Pharmaceutical Research, 25(5), 999–1022.

    Article  Google Scholar 

  51. Walton, D. E., & Mumford, C. J. (1999). The morphology of spray-dried particles. Chemical Engineering Research and Design, 77(5), 442–460.

    Article  Google Scholar 

  52. Larhrib, H., Martin, G. P., Marriott, C., & Prime, D. (2003). The influence of carrier and drug morphology on drug delivery from dry powder formulations. International Journal of Pharmaceutics, 257(1–2), 283–296.

    Article  Google Scholar 

  53. Dickhoff, B. H. J., de Boer, A. H., Lambregts, D., & Frijlink, H. W. (2006). The effect of carrier surface treatment on drug particle detachment from crystalline carriers in adhesive mixtures for inhalation. International Journal of Pharmaceutics, 327(1–2), 17–25.

    Article  Google Scholar 

  54. Nešić, S., & Vodnik, J. (1991). Kinetics of droplet evaporation. Chemical Engineering Science, 46(2), 527–537.

    Article  Google Scholar 

  55. Grosshans, H., Griesing, M., Mönckedieck, M., Hellwig, T., Walther, B., Gopireddy, S., et al. (2016). Numerical and experimental study of the drying of bi-component droplets under various drying conditions. International Journal of Heat and Mass Transfer, 96, 97–109.

    Google Scholar 

  56. Burger, A., Henck, J., Hetz, S., Rollinger, J. M., Weissnicht, A. A., & Stöttner, H. (2000). Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. Journal of Pharmaceutical Sciences, 89(4), 457–468.

    Article  Google Scholar 

  57. Young, P. M., Roberts, D., Chiou, H., Rae, W., Chan, H.-K., & Traini, D. (2008). Composite carriers improve the aerosolisation efficiency of drugs for respiratory delivery. Journal of Aerosol Science, 39(1), 82–93.

    Article  Google Scholar 

  58. Karner, S., Littringer, E. M., & Urbanetz, N. A. (2014). Triboelectrics: The influence of particle surface roughness and shape on charge acquisition during aerosolization and the DPI performance. Powder Technology, 262, 22–29.

    Article  Google Scholar 

  59. Karner, S., Maier, M., Littringer, E. M., & Urbanetz, N. A. (2014). Surface roughness effects on the tribo-charging and mixing homogeneity of adhesive mixtures used in dry powder inhalers. Powder Technology, 264, 544–549.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Roquette Fréres (Lestrem, France) for providing mannitol (Pearlitol 160C) for the spray drying experiments and the group of Maike Windbergs, Saarland University, for the Raman analysis of the interactive mixtures. This project was supported by the ‘Deutsche Forschungsgesellschaft’ (DFG, German Research Foundation) in the framework of the priority program SPP 1423 ‘Process Spray’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Scherließ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mönckedieck, M. et al. (2016). Spray Drying Tailored Mannitol Carrier Particles for Dry Powder Inhalation with Differently Shaped Active Pharmaceutical Ingredients. In: Fritsching, U. (eds) Process-Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-32370-1_14

Download citation

Publish with us

Policies and ethics