Skip to main content

Statistical Extinction Method for the Inline Monitoring of Particle Processes

  • Chapter
  • First Online:
Process-Spray

Abstract

The object of this study is to develop a particle measurement system on the basis of the Statistical Extinction Method, which provides an inline monitoring of different particle processes. The Statistical Extinction Method determines from the mean value and root mean square deviation of a transmission signal through a particle collective, a mean particle size and a particle concentration. For the determination of particle size distribution, an advanced Statistical Extinction Method is developed and verified. This method requires the measurement of transmission signals of several light beams of different beam cross sections through a particle collective.

The validity of the Statistical Extinction Method is examined according to the derivation of its fundamental equations. The requirements on the metrological implementation of the method, as a result, are analyzed and evaluated. Since the method is influenced by some effects that are interacting with each other and difficult to examine, a simulation model for the extinction of light beams by particles is developed. With the simulation calculations, the effects can be examined separately and the quantitative correlation between the transmission signal and the effects influencing the signals can be discussed. Furthermore, the influence of the hardware-related measurement uncertainty on the Statistical Extinction Method is investigated by the simulation calculations. For a process-related applicability of the SE-Method, a number of optical sensor principles and concepts are formulated and developed on the basis of the derived requirements. These are verified with regard to their measurement capability. The validation of the method for different particle processes is carried out with suspensions, emulsions (Schwarz et al., Chemie Ingenieur Technik 86:1544, 2014), and spray processes at specifically designed test benches and sensor assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A meas :

Measurement cross section [m2]

c N :

Number concentration of particles [1/m3]

c V :

Volume concentration of particles [1]

C :

Coefficient matrix [m2]

C ext :

Extinction cross section [m2]

C ext,rel :

Relative extinction cross section [1]

E :

Extinction [1]

f :

Random error [1]

I :

Light intensity [W/m2]

k ext :

Extinction coefficient [1]

L mv :

Length of the measurement volume [m]

m :

Refractive index ratio [1]

N P :

Number of particles [1]

p :

Pressure [Pa]

P :

Light output [W]

q 0(x):

Number density distribution [1/m]

Q 0(x):

Number cumulative distribution [1]

R :

Resultant vector [m2]

S :

Solution vector [1]

T :

Transmission of a light beam [1]

V meas :

Measurement volume [m3]

x :

Particle size [m]

x 1.2 :

Sauter mean diameter [m]

x L :

Diameter of the pinhole [m]

α :

Aperture angle [rad]

λ :

Wave length of the light beam [m]

μ :

Expected value [1]

σ(x):

Root mean square deviation of the particle size [m]

σ(T):

Root mean square deviation of the transmission signal [1]

References

  1. Schwarz, N., Dannigkeit, F., & Ripperger, S. (2014). Theoretische Messunsicherheit der erweiterten statistischen Extinktionsmethode zum Inline-Monitoring von Emulgierprozessen. Chemie Ingenieur Technik, 86, 1544.

    Article  Google Scholar 

  2. Gregory, J. (1985). Turbidity fluctuations in flowing suspensions. Journal of Colloid and Interface Science, 105, 357–371.

    Article  Google Scholar 

  3. Wessely, B. (1999). Extinktionsmessung von Licht zur Charakterisierung disperser Systeme, Fortschritt-Berichte VDI Band 8. VDI Verlag, ISBN 3-18-377308-2.

    Google Scholar 

  4. Dannigkeit, F. (2015). Statistische Extinktionsmethode zum Inline-Monitoring von Partikelprozessen. Dissertation, Kaiserslautern, ISBN 978-3-943995-92-3.

    Google Scholar 

  5. Bouguer, P. (1729). Essai d’optique sur la gradation de la lumiere. New York: Wiley.

    Google Scholar 

  6. Wünsch, P. (1976). Optische Analysenmethoden zur Bestimmung anorganischer Stoffe, Sammlung Göschen Band 2606. Berlin: de Gruyter Verlag.

    Google Scholar 

  7. Bohren, C. F., & Hufmann, D. R. (1983). Absorption and scattering of light by small particles. New York: Wiley.

    Google Scholar 

  8. Dannigkeit, F., Steinke, L., & Ripperger, S. (2012). Basic preeximinations of inline monitoring of process sprays by statistical extinction method. Particle & Particle Systems Characterization, 27, 137–145.

    Article  Google Scholar 

  9. Steinke, L., Wessely, B., & Ripperger, S. (2009). Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme. Chemie Ingenieur Technik, 81, 735–747.

    Article  Google Scholar 

  10. Kerker, M. (1969). The scattering of light and other electromagnetic radiation. New York: Academic.

    Google Scholar 

  11. Dobbins, R. A., & Jizmagian, G. S. (1966). Optical scattering cross sections for polydispersion of dielectric spheres. Journal of the Optical Society of America, 56, 1345–1349.

    Article  Google Scholar 

  12. Riebel, U. (1988). Die Grundlagen der Partikelgrößenanalyse mittels Ultraschallspektroskopie. Dissertation, Karlsruhe.

    Google Scholar 

  13. Dannigkeit, F., Steinke, L., & Ripperger, S. (2012). Inline-Messung eines mittleren Tropfendurchmessers und der Tropfenkonzentration von Prozesssprays mit statistischer Extinktionsmessung. Chemie Ingenieur Technik, 83, 357–364.

    Article  Google Scholar 

  14. Steinke, L. (2013). Messverfahren zum Monitoring von Fällungsprozessen sowie Untersuchungen eines neuen Verfahrens zur CaCO 3 -Fällung. Dissertation, Kaiserslautern, ISBN 978-3-943995-40-4.

    Google Scholar 

  15. Dannigkeit, F., Steinke, L., & Ripperger, S. (2012). Basic preexaminations of inline measurements of droplet size distributions by statistical extinction method. In 12th Triennial International Conference on Liquid Atomization and Spray Systems, September 2–6, 2012, Heidelberg, Germany.

    Google Scholar 

  16. Mescher, A., & Walzel, P. (2010). Störeinfluss durch Schlieren bei der Tropfengrößenmessung an Zweistoffdüsen durch Laserbeugungsspektrometrie. Chemie Ingenieur Technik, 82, 717–722.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Ripperger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dannigkeit, F., Schwarz, N., Ripperger, S. (2016). Statistical Extinction Method for the Inline Monitoring of Particle Processes. In: Fritsching, U. (eds) Process-Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-32370-1_12

Download citation

Publish with us

Policies and ethics