Skip to main content

Droplet-Stream Freeze-Drying for the Production of Protein Formulations: From Simulation to Production

  • Chapter
  • First Online:
Book cover Process-Spray

Abstract

The objective of this interdisciplinary project was to develop a continuous atmospheric freeze-drying process for the production of lyophilized powder aerosols as pulmonary drug delivery systems in cooperation between an experimental and formulation group at the University of Bonn and a modelling and imaging team at the University of Halle (Saale). Observation and simulation results indicated deficiencies in the initial concept, which were eliminated by stepwise modifications of the freezing and drying system. Collisions and coalescence of droplets in fast streams exiting from piezoelectric generators were recorded by high-speed imaging and analyzed. Both the mean and the spread of the particle size distributions were reduced by a novel vortex-jet freezing technique. The fine particle fraction of the powder, which is suited to alveolar deposition in lungs, was increased to more than 40 %. In spite of the small size and low density of spherical and highly porous particles, the flowability of the powders is very good. Besides the powder aerosols envisaged in the initial concept, the method can be adapted to the production of other pharmaceutical dosage forms and may contribute to lowering the expenses and energy requirements for the manufacture of freeze-dried parenteral products.

The aim of the theoretical and numerical part of the project was the support of the technical realization of a continuous atmospheric spray-freeze-drying chamber using the Euler/Lagrange approach for numerically calculating the entire process and providing strategies for the design of the equipment and the optimal operational conditions. Since models for the drag coefficient of porous particles and the sublimation (drying) of frozen solution droplets are not available, a multi-scale approach was adopted. This implies that first the flow about a dry single porous particle and porous particles where the pore structure is fully filled with ice was proposed to simulate by the Lattice–Boltzmann method (LBM). Therefrom, appropriate correlations for drag and sublimation models shall be developed. Consequently, the available in-house LBM-code had to be extended by the calculation of the temperature field, fully coupled with the flow field. Moreover, a tracking model for the retraction of the ice structure inside the porous particle was proposed.

In parallel a sublimation model for Lagrangian calculations of the frozen particle phase was implemented. In the literature, two approaches for atmospheric freeze-drying have been developed: experimental diffusion models and the uniformly retreating ice front (URIF) model. In the experimental diffusion models, multi-component vapour diffusion mechanisms are reflected by experimentally determined effective diffusivity and activation energy. The URIF model is based on the assumption of equilibrium at the ice front interface and was selected for the present application. Simultaneous heat and mass transfer can be calculated solving the conservation equations of mass and energy. Preliminary calculations for the drying of single iced particles were conducted for validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( f\left(\overrightarrow{\mathsf{x}},\overrightarrow{\xi},t\right) \) :

Distribution function in the LBM

1N:

Single fluid nozzle

2N:

Two fluid nozzle

3N:

Three fluid nozzle

4N:

Four fluid nozzle

AES:

Area equivalent size

A equi (m2):

Equivalent area

AFD:

Atmospheric freeze-drying

c D :

Drag coefficient

CI:

Carr’s Index

CT-DSG:

Capillary type droplet stream generator

d aero (μm):

Aerodynamic diameter

D AES (M):

Area equivalent diameter of porous particle or agglomerates

D e (m2/s):

Effective diffusivity of water vapour in the dried product

D f :

Fractal dimension

d geo (μm):

Geometric diameter

d p (m):

Particle diameter

DSG:

Droplet stream generator

D VES (m):

Volume equivalent diameter of porous particle or agglomerates

f eq :

Equilibrium distribution function

FPF (%):

Fine particle fraction

G (kg/s):

Sublimation flow rate

IgG:

Immunoglobulin G

J w (kg/s m2):

Sublimation flux

L 0 (m):

Initial characteristic dimension of the product

L dried (m):

Characteristic dimension of the dried product

LED:

Light emitting diode

LN2 :

Liquid nitrogen

M w (kg/kmol):

Water molecular weight

NGI:

Next-Generation Impactor

n pp :

Number of particles

p *w (Pa):

Water vapour partial pressure at the external surface of the product

PT-DSG:

Pinhole type droplet stream generator

p w (Pa):

Water vapour partial pressure

p w,c (Pa):

Water vapour partial pressure in the drying chamber

p w,i (Pa):

Water vapour partial pressure at the sublimation interface

Q (W):

Heat flow rate

R (J/kmol K):

Ideal gas constant

r (m):

Radial coordinate

rH (%):

Relative humidity

S (m2):

Surface of the product

s.c.:

Subcutaneous

SD:

Spray drying

SEC:

Size exclusion chromatography

SEM:

Scanning electron microscopy

SFD:

Spray-freeze-drying

t (s):

Time

T air (K):

Air temperature

T i (K):

Temperature of the sublimation interface

U air (m/s):

Air velocity

V dried (m3):

Volume of the dried product

W (kgwater/kgdry matter):

Water content in the product at the end of the drying process

W 0 (kgwater/kgdry matter):

Water content in the product at the beginning of the drying process

×10 (μm):

Volumetric tenth percentile diameter

×50 (μm):

Volumetric median diameter

×90 (μm):

Volumetric ninetieth percentile diameter

α (m/s):

Mass transfer coefficient

β (W/m2⋅K):

Heat transfer coefficient

ΔH s (J/kg):

Heat of sublimation

ε :

Gas volume fraction or void fraction

λ dried (W/m K):

Thermal conductivity of the dried product

μ (Pa ⋅ s):

Dynamic viscosity

ρ (kg/m3):

Gas density

ρ dried (kg/m3):

Density of the dried product

σ :

Indicator for velocity direction

τ :

Relaxation parameter

φ p :

Particle or solids volume fraction

References

  1. Werly, E. P., & Bauman, E. K. (1964). Production of submicronic powder by spray-freezing. Archives of Environmental Health, 9, 567–571.

    Article  Google Scholar 

  2. Wanning, S., Süverkrüp, R., & Lamprecht, A. (2015). Pharmaceutical spray freeze drying. International Journal of Pharmaceutics, 488, 136–153.

    Article  Google Scholar 

  3. Süverkrüp, R., Gruner, K., & Diestelhorst, M. (2009). Spherolyophilizates as ophthalmic drug delivery systems. Investigative Ophthalmology & Visual Science, 50, 5557.

    Google Scholar 

  4. Plumb, K. (2005). Continuous processing in the pharmaceutical industry. Chemical Engineering Research and Design, 83, 730–738.

    Article  Google Scholar 

  5. Süverkrüp, R. (n.d.). Verfahren und Anlage zurkontinuierlichen Produktion von pharmazeutischen Lyophilisaten (German Application). 10 2011 053 7732.

    Google Scholar 

  6. Süverkrüp, R. (n.d.). Vorrichtung und Verfahren zur kontinuierlichen Sublimationstrocknung gefrorener Tropfen und Mikrotropfen in einem geschlossenem Gaskreislauf. 2015 0430 1507 5500 DE.

    Google Scholar 

  7. Baroud, Y., Eggerstedt, S. N., Klaiber, M., Süverkrüp, R., Simon, S., & Lamprecht, A. (2012). Monitoring of collisions in fast droplet streams by real-time image processing with line sensors. In ILASS-Americas 24th Annual Conference on Liquid Atomization and Spray Systems.

    Google Scholar 

  8. Eggerstedt, S. (2014). SprühgefriertrocknungzurHerstellung von Protein-Inhalanda. Dissertation. Rheinische Friedrich-Wilhelms-Universität Bonn.

    Google Scholar 

  9. Lierke, E. (1999). Acoustic levitation a comprehensive survey of principles and applications. Acta Acustica United with Acustica, 399, 151–204.

    Google Scholar 

  10. Yarin, A. L., Pfaffenlehner, M., & Tropea, C. (1998). On the acoustic levitation of droplets. Journal of Fluid Mechanics, 356, 65–91.

    Article  Google Scholar 

  11. Yarin, A. L., Brenn, G., Kastner, O., Rensink, D., & Tropea, C. (1999). Evaporation of acoustically levitated droplets. Journal of Fluid Mechanics, 399, 151–204.

    Article  Google Scholar 

  12. Al Zaitone, B., & Tropea, C. (2011). Evaporation of pure liquid droplets: Comparison of droplet evaporation in an acoustic field versus glass-filament. Chemical Engineering Science, 66, 3914–3921.

    Article  Google Scholar 

  13. Al Zaitone, B., & Lamprecht, A. (2013). Single droplet drying step characterization in microsphere preparation. Colloids and Surfaces B: Biointerfaces, 105, 328–334.

    Article  Google Scholar 

  14. Kastner, O. (2001). The acoustic tube levitator—A novel device for determining the drying kinetic of single droplets. Chemical Engineering Technology, 24, 335–339.

    Article  Google Scholar 

  15. Eggerstedt, S. N., Dietzel, M., Sommerfeld, M., Süverkrüp, R., & Lamprecht, A. (2012). Protein spheres prepared by drop jet freeze drying. International Journal of Pharmaceutics, 438, 160–166.

    Article  Google Scholar 

  16. Ali, M. E., & Lamprecht, A. (2014). Spray freeze drying for dry powder inhalation of nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 87, 510–517.

    Article  Google Scholar 

  17. Schmidt, O. (2011). Numerische und experimentelle Untersuchung der Rußabscheidungan Partikelsensorenim Dieselabgasstrang. Verlag Dr. Hut. ISBN 9783843900614.

    Google Scholar 

  18. Yuan, P., & Schaefer, L. A. (2005). Thermal lattice Boltzmann two-phase flow model and its application to heat transfer problems—Part 1. Theoretical foundation. Journal of Fluids Engineering, 128, 142–150.

    Article  Google Scholar 

  19. Alexander, F. J., Chen, S., & Sterling, J. D. (1993). Lattice Boltzmann thermohydrodynamics. Physical Review E, 47, R2249–R2252.

    Article  Google Scholar 

  20. Filippova, O., & Hänel, D. (2000). A novel lattice BGK approach for low mach number combustion. Journal of Computational Physics, 158, 139–160.

    Article  Google Scholar 

  21. Lallemand, P., & Luo, L.-S. (2003). Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions. Physical Review E, 68, 036706.

    Article  Google Scholar 

  22. Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 94, 511–525.

    Article  Google Scholar 

  23. Crouse, B. (2003). Lattice-Boltzmann Strömungssimulationen auf Baumdatenstrukturen. Technische Universität München.

    Google Scholar 

  24. Dietzel, M., & Sommerfeld M. (2008). Determination of aerodynamic coefficients of agglomerates using the Lattice-Boltzmann-Method. In Proceedings 6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries No. CFD08-105.

    Google Scholar 

  25. Dietzel, M., & Sommerfeld, M. (2013). Numerical calculation of flow resistance for agglomerates with different morphology by the Lattice–Boltzmann method. Powder Technology, 250, 122–137.

    Article  Google Scholar 

  26. Ernst, M., Dietzel, M., & Sommerfeld, M. (2013). A lattice Boltzmann method for simulating transport and agglomeration of resolved particles. Acta Mechanica, 224, 2425–2449.

    Article  Google Scholar 

  27. Li, S., Stawczyk, J., & Zbicinski, I. (2007). CFD model of apple atmospheric freeze drying at low temperature. Drying Technology, 25, 1331–1339.

    Article  Google Scholar 

  28. Blei, S., & Sommerfeld, M. (2007). CFD in drying technology—Spray-dryer simulation. In E. Tsotsas & A. S. Mujumdar (Eds.), Modern drying technology, Volume 1, Computational tools at different scales (pp. 155–208). New York: Wiley.

    Google Scholar 

  29. Claussen, I. C., Strømmen, I., Hemmingsen, A. K. T., & Rustad, T. (2007). Relationship of product structure, sorption characteristics, and freezing point of atmospheric freeze-dried foods. Drying Technology, 25, 853–865.

    Article  Google Scholar 

  30. Santacatalina, J. V., Fissore, D., Cárcel, J. A., Mulet, A., & García-Pérez, J. V. (2015). Model-based investigation into atmospheric freeze drying assisted by power ultrasound. Journal of Food Engineering, 151, 7–15.

    Article  Google Scholar 

  31. Walzel, P. (1990). Zerstäuben von Flüssigkeiten. Chemie Ingenieur Technik, 62, 983–994.

    Article  Google Scholar 

  32. Süverkrüp, R., Eggerstedt, S. N., Gruner, K., Kuschel, M., Sommerfeld, M., & Lamprecht, A. (2013). Collisions in fast droplet streams for the production of spherolyophilisates. European Journal of Pharmaceutical Sciences, 49, 535–541.

    Article  Google Scholar 

  33. Süverkrüp, R., Lamprecht, A., Eggerstedt, S. N., Kuschel, M., & Sommerfeld, M. (2016). Collisions and coalescence in droplet streams for the production of freeze dried powder aerosols for pulmonary drug delivery. Colloids and Surfaces B: Biointerfaces, 141, 443–449.

    Google Scholar 

  34. ASTM E 799-03 (2015). Standard practice for determining data criteria and processing for liquid drop size analysis.

    Google Scholar 

  35. Serim, T. M., Wanning, S., & Lamprecht, A. (n.d.). Determination of residual moisture in spray-freeze-dried particles and optimization of the freeze drying time, San Diego, CA.

    Google Scholar 

  36. Claussen, I. C., Ustad, T. S., Str⊘mmen, I., & Walde, P. M. (2007). Atmospheric freeze drying—A review. Drying Technology, 25, 947–957.

    Article  Google Scholar 

  37. Schiffter, H., Condliffe, J., & Vonhoff, S. (2010). Spray-freeze-drying of nano suspensions: The manufacture of insulin particles for needle-free ballistic powder delivery. Journal of the Royal Society Interface, 7, S483–S500.

    Article  Google Scholar 

  38. Lamprecht, A. (2013). Pharmaceutical formulations comprising spherolyophilisates of biological molecules. Wo 2013/041542 A1.

    Google Scholar 

  39. Vanni, M. (2000). Creeping flow over spherical permeable aggregates. Chemical Engineering Science, 55, 685–698.

    Article  Google Scholar 

  40. Schiller, L., & Naumann, A. (1933). Über die grundlegenden Berechnungenbei der Schwerkraftaufbereitung. Zeitschrift des Vereins Deutsche Ingenieure, 77, 318–320.

    Google Scholar 

  41. Martınez-López, F., Cabrerizo-Vılchez, M. A., & Hidalgo-Álvarez, R. (2001). An improved method to estimate the fractal dimension of physical fractals based on the Hausdorff definition. Physica A: Statistical Mechanics and its Applications, 298, 387–399.

    Article  Google Scholar 

  42. Tölke, J. (2006). A thermal model based on the Lattice Boltzmann method for low Mach number compressible flows. Journal of Computational and Theoretical Nanoscience, 3, 579–587.

    Google Scholar 

  43. Claussen, I. C., Andresen, T., Eikevik, T. M., & Strømmen, I. (2007). Atmospheric freeze drying—Modeling and simulation of a tunnel dryer. Drying Technology, 25, 1959–1965.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by the German Research Council (DFG: Deutsche Forschungsgemeinschaft) through the grants LA 1362-2/1-3 and SO 204-36/1-3 in the frame of the SPP 1423 is gratefully acknowledged. The authors would also like to thank all cooperating teams within the framework of the SPP 1423, Sören Höhn (Frauenhofer IKTS, Dresden) for the ion-beam section of particles and SEM imaging, Franz–Josef Willems and Thomas Vidua for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alf Lamprecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wanning, S. et al. (2016). Droplet-Stream Freeze-Drying for the Production of Protein Formulations: From Simulation to Production. In: Fritsching, U. (eds) Process-Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-32370-1_10

Download citation

Publish with us

Policies and ethics