Geometrical Characterization of the Uniqueness Regions Under Special Sets of Three Directions in Discrete Tomography

  • Paolo Dulio
  • Andrea Frosini
  • Silvia M. C. PaganiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9647)


The faithful reconstruction of an unknown object from projections, i.e., from measurements of its density function along a finite set of discrete directions, is a challenging task. Some theoretical results prevent, in general, both to perform the reconstruction sufficiently fast, and, even worse, to be sure to obtain, as output, the unknown starting object. In order to reduce the number of possible solutions, one tries to exploit some a priori knowledge. In the present paper we assume to know the size of a lattice grid \(\mathcal {A}\) containing the object to be reconstructed. Instead of looking for uniqueness in the whole grid \(\mathcal {A}\), we want to address the problem from a local point of view. More precisely, given a limited number of directions, we aim in showing, first of all, which is the subregion of \(\mathcal {A}\) where pixels are uniquely reconstructible, and then in finding where the reconstruction can be performed quickly (in linear time). In previous works we have characterized the shape of the region of uniqueness (ROU) for any pair of directions. In this paper we show that the results can be extended to special sets of three directions, by splitting them in three different pairs. Moreover, we show that such a procedure cannot be employed for general triples of directions. We also provide applications concerning the obtained characterization of the ROU, and further experiments which underline some regularities in the shape of the ROU corresponding to sets of three not-yet-considered directions.


Discrete tomography Lattice grid Projection Uniqueness region 


  1. 1.
    Brunetti, S., Dulio, P., Hajdu, L., Peri, C.: Ghosts in discrete tomography. J. Math. Imaging Vis. 53(2), 210–224 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brunetti, S., Dulio, P., Peri, C.: Discrete tomography determination of bounded lattice sets from four X-rays. Discrete Appl. Math. 161(15), 2281–2292 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brunetti, S., Dulio, P., Peri, C.: Discrete tomography determination of bounded sets in \(\mathbb{Z}^n\). Discrete Appl. Math. 183, 20–30 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dulio, P., Frosini, A., Pagani, S.M.C.: Uniqueness regions under sets of generic projections in discrete tomography. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 285–296. Springer, Cham (2014)Google Scholar
  5. 5.
    Dulio, P., Frosini, A., Silvia, M.C.: A geometrical characterization of regions of uniqueness and applications to discrete tomography. Inverse Prob. 31(12), 125011 (2015)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fishburn, P.C., Shepp, L.A.: Sets of uniqueness and additivity in integer lattices. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography. Applied and Numerical Harmonic Analysis, pp. 35–58. Birkhäuser Boston, Boston (1999)CrossRefGoogle Scholar
  7. 7.
    Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Math. 202(1–3), 45–71 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Guédon, J.-P., Normand, N.: The mojette transform: the first ten years. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 79–91. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Hajdu, L.: Unique reconstruction of bounded sets in discrete tomography. In: Proceedings of the Workshop on Discrete Tomography and its Application, vol. 20 of Electronic Notes in Discrete Mathematics, pp. 15–25 (electronic). Elsevier, Amsterdam (2005)Google Scholar
  10. 10.
    Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. Journal fur die Reine und Angewandte Mathematik 534, 119–128 (2001). Cited by 34Google Scholar
  11. 11.
    Katz, M.: Questions of Uniqueness and Resolution in Reconstruction from Projections. Springer, Heidelberg (1978)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kuba, A., Herman, G.T.: Discrete tomography: a historical overview. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography. Applied and Numerical Harmonic Analysis, pp. 3–34. Birkhäuser Boston, Boston (1999)CrossRefGoogle Scholar
  13. 13.
    Normand, N., Guédon, J.-P.: La transforme mojette: une reprsentation redondante pour l’image. Comptes Rendus de l’Acadmie des Sciences - Series I - Mathematics 326(1), 123–126 (1998)Google Scholar
  14. 14.
    Normand, N., Kingston, A., Évenou, P.: A geometry driven reconstruction algorithm for the mojette transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Paolo Dulio
    • 1
  • Andrea Frosini
    • 2
  • Silvia M. C. Pagani
    • 1
    Email author
  1. 1.Dipartimento di Matematica “F. Brioschi”Politecnico di MilanoMilanoItaly
  2. 2.Dipartimento di Matematica e Informatica “U. Dini”Università di FirenzeFirenzeItaly

Personalised recommendations