Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 64))

  • 5455 Accesses

Abstract

Finite element methods provide an abstract framework for interpolating functions or vector fields in multidimensional domains. They allow for specifying Galerkin methods for approximating partial differential equations. In combination with regularity results, error estimates in various norms can be proved. The efficient implementation of low order and isoparametric methods is discussed in the case of stationary and evolutionary model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A discussion of the historical development of the finite element method can be found in [9]. The monograph [5] provides a comprehensive overview over finite element methods and their analysis. Constructive existence theories for interpolating finite element functions are stated in [3]; a more practical approach is followed in [2]. An important contribution to the numerical analysis of finite element methods for parabolic equations is the article [22]; further results can be found in the monograph [21]. Classical articles on error estimates for finite element methods are the references [1, 14, 15, 17, 18]; see [6] for quadrature rules on simplices. Further references on finite element methods for partial differential equations are [4, 7, 8, 10–13, 16, 19, 20].

References

A discussion of the historical development of the finite element method can be found in [9]. The monograph [5] provides a comprehensive overview over finite element methods and their analysis. Constructive existence theories for interpolating finite element functions are stated in [3]; a more practical approach is followed in [2]. An important contribution to the numerical analysis of finite element methods for parabolic equations is the article [22]; further results can be found in the monograph [21]. Classical articles on error estimates for finite element methods are the references [1, 14, 15, 17, 18]; see [6] for quadrature rules on simplices. Further references on finite element methods for partial differential equations are [4, 7, 8, 10–13, 16, 19, 20].

  1. Aubin, J.P.: Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods. Ann. Scuola Norm. Sup. Pisa (3) 21, 599–637 (1967)

    Google Scholar 

  2. Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007). URL http://dx.doi.org/10.1017/CBO9780511618635

  3. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). URL http://dx.doi.org/10.1007/978-0-387-75934-0

    Google Scholar 

  4. Carstensen, C.: Wissenschaftliches Rechnen (1997). Lecture Notes, University of Kiel, Germany

    Google Scholar 

  5. Ciarlet, P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). URL http://dx.doi.org/10.1137/1.9780898719208

  6. Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19 (6), 1260–1262 (1982). URL http://dx.doi.org/10.1137/0719090

    Google Scholar 

  7. Dziuk, G.: Theorie und Numerik Partieller Differentialgleichungen. Walter de Gruyter GmbH & Co. KG, Berlin (2010). URL http://dx.doi.org/10.1515/9783110214819

  8. Ern, A., Guermond, J.L.: Theory and practice of finite elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004). URL http://dx.doi.org/10.1007/978-1-4757-4355-5

    Google Scholar 

  9. Gander, M.J., Wanner, G.: From Euler, Ritz, and Galerkin to modern computing. SIAM Rev. 54 (4), 627–666 (2012). URL http://dx.doi.org/10.1137/100804036

    Google Scholar 

  10. Grossmann, C., Roos, H.G.: Numerical treatment of partial differential equations. Universitext. Springer, Berlin (2007). URL http://dx.doi.org/10.1007/978-3-540-71584-9

    Google Scholar 

  11. Hackbusch, W.: Elliptic differential equations. Springer Series in Computational Mathematics, vol. 18. Springer, Berlin (1992). URL http://dx.doi.org/10.1007/978-3-642-11490-8

    Google Scholar 

  12. Knabner, P., Angermann, L.: Numerical methods for elliptic and parabolic partial differential equations. Texts in Applied Mathematics, vol. 44. Springer, New York (2003)

    Google Scholar 

  13. Larson, M.G., Bengzon, F.: The finite element method: theory, implementation, and applications. Texts in Computational Science and Engineering, vol. 10. Springer, Heidelberg (2013). URL http://dx.doi.org/10.1007/978-3-642-33287-6

    Google Scholar 

  14. Nitsche, J.: Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math. 11, 346–348 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rannacher, R.: Zur \(L^{\infty }\)-Konvergenz linearer finiter Elemente beim Dirichlet-Problem. Math. Z. 149 (1), 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rannacher, R.: Numerische Mathematik 2 (Numerik partieller Differentialgleichungen) (2008). URL http://numerik.iwr.uni-heidelberg.de/~lehre/notes/. Lecture Notes, University of Heidelberg, Germany

  17. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (158), 437–445 (1982). URL http://dx.doi.org/10.2307/2007280

    Google Scholar 

  18. Schatz, A.H., Wahlbin, L.B.: Maximum norm estimates in the finite element method on plane polygonal domains. I. Math. Comp. 32 (141), 73–109 (1978)

    MathSciNet  MATH  Google Scholar 

  19. Schwab, C.: p- and hp-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998)

    Google Scholar 

  20. Strang, G., Fix, G.: An Analysis of the Finite Eelement Method, 2nd edn. Wellesley-Cambridge Press, Wellesley, MA (2008)

    MATH  Google Scholar 

  21. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, vol. 25, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  22. Wheeler, M.F.: A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartels, S. (2016). Finite Element Method. In: Numerical Approximation of Partial Differential Equations. Texts in Applied Mathematics, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-32354-1_3

Download citation

Publish with us

Policies and ethics