Skip to main content

Regulatory T Cells in Ischemic Brain Injury

  • Chapter
  • First Online:
Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 846 Accesses

Abstract

Inflammation is a hallmark in the pathogenesis of acute stroke and contributes substantially to secondary neuronal degeneration. Circulating leukocytes—particularly pro-inflammatory T cells—invading the ischemic brain contribute to post-stroke neuroinflammation and exacerbation of stroke outcome. However, a subpopulation of T cells, regulatory T cells (Treg), are potent immunosuppressant cells involved in resolution of tissue inflammation and have a key role in inflammatory diseases. Recent studies have identified a prominent role of Foxp3+ Treg cells in modulating the inflammatory response to acute brain ischemia and thereby contributing to stroke outcome. Most studies observed a neuroprotective function of Treg cells by inhibiting an overshooting immunological “collateral damage” after stroke and first Treg-targeted therapeutic strategies have been tested. This chapter provides a comprehensive overview of the current knowledge on Treg cells in experimental and clinical stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15(8):946–50.

    Article  CAS  PubMed  Google Scholar 

  3. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood. 2012;120(18):3793–802. Epub Nov 1 2012. English.

    Article  CAS  PubMed  Google Scholar 

  4. Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134(Pt 3):704–20.

    Article  PubMed  Google Scholar 

  5. Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol. 2011;69(1):119–29.

    Article  CAS  PubMed  Google Scholar 

  6. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500.

    Article  CAS  PubMed  Google Scholar 

  7. Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000;101(5):455–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64. Epub 1995/08/01. eng.

    CAS  PubMed  Google Scholar 

  9. Ochs HD, Ziegler SF, Torgerson TR. FOXP3 acts as a rheostat of the immune response. Immunol Rev. 2005;203:156–64. Epub 2005/01/22. eng.

    Article  CAS  PubMed  Google Scholar 

  10. Baecher-Allan C, Anderson DE. Regulatory cells and human cancer. Semin Cancer Biol. 2006;16(2):98–105. Epub 2005/12/28. eng.

    Article  CAS  PubMed  Google Scholar 

  11. Chatila TA. Role of regulatory T cells in human diseases. J Allergy Clin Immunol. 2005;116(5):949–59; quiz 60. Epub 2005/11/09. eng.

    Article  CAS  PubMed  Google Scholar 

  12. Battaglia M, Roncarolo MG. Induction of transplantation tolerance via regulatory T cells. Inflamm Allergy Drug Targets. 2006;5(3):157–65. Epub 2006/08/22. eng.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang H, Chess L. Regulation of immune responses by T cells. N Engl J Med. 2006;354(11):1166–76. Epub 2006/03/17. eng.

    Article  CAS  PubMed  Google Scholar 

  14. Shevach EM, DiPaolo RA, Andersson J, Zhao DM, Stephens GL, Thornton AM. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev. 2006;212:60–73.

    Article  CAS  PubMed  Google Scholar 

  15. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40(5):1849–57.

    Article  PubMed  Google Scholar 

  16. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, et al. Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol. 2013;23(1):34–44. Epub 2012/07/11. eng.

    Article  CAS  PubMed  Google Scholar 

  18. Stubbe T, Ebner F, Richter D, Randolf Engel O, Klehmet J, Royl G, et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab. 2012;33(1):37–47.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liesz A, Zhou W, Na SY, Hammerling GJ, Garbi N, Karcher S, et al. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. J Neurosci. 2013;33(44):17350–62. Epub 2013/11/01. eng.

    Article  CAS  PubMed  Google Scholar 

  20. Kleinschnitz C, Wiendl H. Con: regulatory T cells are protective in ischemic stroke. Stroke. 2013;44(8):e87–8. Epub 2013/07/04. eng.

    Article  PubMed  Google Scholar 

  21. Hu X, Li P, Chen J. Pro: regulatory T cells are protective in ischemic stroke. Stroke. 2013;44(8):e85–6. Epub 2013/07/04. eng.

    Article  PubMed  Google Scholar 

  22. Urra X, Cervera A, Villamor N, Planas AM, Chamorro A. Harms and benefits of lymphocyte subpopulations in patients with acute stroke. Neuroscience. 2009;158(3):1174–83. Epub 2008/07/16. eng.

    Article  CAS  PubMed  Google Scholar 

  23. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H. CD4+ FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metab Brain Dis. 2011;26(1):87–90. PMCID: 3070853. Epub 2010/11/18. eng.

    Article  PubMed  Google Scholar 

  24. Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med. 2007;204(1):57–63. PMCID: 2118432. Epub 2007/01/04. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suffner J, Hochweller K, Kuhnle MC, Li X, Kroczek RA, Garbi N, et al. Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice. J Immunol. 2010;184(4):1810–20. Epub 2010/01/20. eng.

    Article  CAS  PubMed  Google Scholar 

  26. Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Gobel K, Schuhmann MK, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–91. Epub 2012/11/20. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie L, Sun F, Wang J, Mao X, Xie L, Yang SH, et al. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. J Immunol. 2014;192(12):6009–19. PMCID: 4128178. Epub 2014/05/16. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol. 2013;74(3):458–71. PMCID: 3748165. Epub 2013/05/16. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Na SY, Mracsko E, Liesz A, Hunig T, Veltkamp R. Amplification of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice. Stroke. 2015;46(1):212–20. Epub 2014/11/08. Eng.

    Article  CAS  PubMed  Google Scholar 

  30. Schuhmann MK, Kraft P, Stoll G, Lorenz K, Meuth SG, Wiendl H, et al. CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. J Cereb Blood Flow Metab. 2015;35(1):6–10. Epub 2014/10/16. Eng.

    Article  CAS  PubMed  Google Scholar 

  31. Liesz A, Hu X, Kleinschnitz C, Offner H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke. 2015;46(5):1422–30.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shevach EM. Review mechanisms of Foxp3 + T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45.

    Article  CAS  PubMed  Google Scholar 

  33. Spera PA, Ellison JA, Feuerstein GZ, Barone FC. IL-10 reduces rat brain injury following focal stroke. Neurosci Lett. 1998;251(3):189–92.

    Article  CAS  PubMed  Google Scholar 

  34. Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, et al. Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci. 2000;12(7):2265–72.

    Article  CAS  PubMed  Google Scholar 

  35. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis. 2013;28(3):375–86. PMCID: 3737266. Epub 2013/05/04. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liesz A, Bauer A, Hoheisel JD, Veltkamp R. Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation: an experimental microarray study. Neurosci Lett. 2014;579:18–23. Epub 2014/07/16. eng.

    Article  CAS  PubMed  Google Scholar 

  37. O’Garra A, Vieira PL, Vieira P, Goldfeld AE. IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest. 2004;114(10):1372–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Frenkel D, Huang Z, Maron R, Koldzic DN, Hancock WW, Moskowitz MA, et al. Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. J Immunol. 2003;171(12):6549–55.

    Article  CAS  PubMed  Google Scholar 

  39. Frenkel D, Huang Z, Maron R, Koldzic DN, Moskowitz MA, Weiner HL. Neuroprotection by IL-10-producing MOG CD4+ T cells following ischemic stroke. J Neurol Sci. 2005;233(1-2):125–32.

    Article  CAS  PubMed  Google Scholar 

  40. Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG, et al. Interleukin-10 in the brain. Crit Rev Immunol. 2001;21(5):427–49.

    Article  CAS  PubMed  Google Scholar 

  41. Ishibashi S, Maric D, Mou Y, Ohtani R, Ruetzler C, Hallenbeck JM. Mucosal tolerance to E-selectin promotes the survival of newly generated neuroblasts via regulatory T-cell induction after stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab. 2009;29(3):606–20.

    Article  CAS  PubMed  Google Scholar 

  42. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):654–65. Epub 2005/08/27. eng.

    Article  CAS  PubMed  Google Scholar 

  43. Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6(10):775–86.

    Article  CAS  PubMed  Google Scholar 

  44. Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol. 2006;176(11):6523–31. Epub 2006/05/20. eng.

    Article  CAS  PubMed  Google Scholar 

  45. Liesz A, Hagmann S, Zschoche C, Adamek J, Zhou W, Sun L, et al. The spectrum of systemic immune alterations after murine focal ischemia: immunodepression versus immunomodulation. Stroke. 2009;40(8):2849–58. Epub 2009/05/16. eng.

    Article  CAS  PubMed  Google Scholar 

  46. Li P, Mao L, Zhou G, Leak RK, Sun BL, Chen J, et al. Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia. Stroke. 2013;44(12):3509–15. PMCID: 3895539. Epub 2013/10/05. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liesz A, Dalpke A, Mracsko E, Antoine DJ, Roth S, Zhou W, et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci. 2015;35(2):583–98.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hug A, Liesz A, Muerle B, Zhou W, Ehrenheim J, Lorenz A, et al. Reduced efficacy of circulating costimulatory cells after focal cerebral ischemia. Stroke. 2011;42(12):3580–6.

    Article  PubMed  Google Scholar 

  49. Yan J, Read SJ, Henderson RD, Hull R, O’Sullivan JD, McCombe PA, et al. Frequency and function of regulatory T cells after ischaemic stroke in humans. J Neuroimmunol. 2012;243(1–2):89–94.

    Article  CAS  PubMed  Google Scholar 

  50. Li Q, Wang Y, Yu F, Wang YM, Zhang C, Hu C, et al. Peripheral Th17/Treg imbalance in patients with atherosclerotic cerebral infarction. Int J Clin Exp Pathol. 2013;6(6):1015–27. PMCID: 3657353.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wigren M, Bjorkbacka H, Andersson L, Ljungcrantz I, Fredrikson GN, Persson M, et al. Low levels of circulating CD4+ FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler Thromb Vasc Biol. 2012;32(8):2000–4.

    Article  CAS  PubMed  Google Scholar 

  52. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–10.

    Article  CAS  PubMed  Google Scholar 

  53. Hossmann KA. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab. 2012;32(7):1310–6. PMCID: 3390813. Epub 2012/01/12. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gauberti M, Martinez de Lizarrondo S, Orset C, Vivien D. Lack of secondary microthrombosis after thrombin-induced stroke in mice and non-human primates. J Thromb Haemost. 2014;12(3):409–14. Epub 2013/12/21. eng.

    Article  CAS  PubMed  Google Scholar 

  55. Gauberti M, Vivien D. Letter by Gauberti and Vivien regarding article, “amplification of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice”. Stroke. 2015;46(2):e50–1.

    Article  PubMed  Google Scholar 

  56. Liesz A, Ruger H, Purrucker J, Zorn M, Dalpke A, Mohlenbruch M, et al. Stress mediators and immune dysfunction in patients with acute cerebrovascular diseases. PLoS One. 2013;8(9):e74839. PMCID: 3777986. Epub 2013/09/27. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Levings MK, Allan S, d’Hennezel E, Piccirillo CA. Functional dynamics of naturally occurring regulatory T cells in health and autoimmunity. Adv Immunol. 2006;92:119–55. Epub 2006/12/06. eng.

    Article  CAS  PubMed  Google Scholar 

  58. Danese S, Rutella S. The Janus face of CD4+ CD25+ regulatory T cells in cancer and autoimmunity. Curr Med Chem. 2007;14(6):649–66. Epub 2007/03/10. eng.

    Article  CAS  PubMed  Google Scholar 

  59. Schwartz M, Raposo C. Protective autoimmunity: a unifying model for the immune network involved in CNS repair. Neuroscientist. 2014;20(4):343–58. Epub 2014/01/08. Eng.

    Article  PubMed  Google Scholar 

  60. Walsh JT, Zheng J, Smirnov I, Lorenz U, Tung K, Kipnis J. Regulatory T cells in central nervous system injury: a double-edged sword. J Immunol. 2014;193(10):5013–22. Epub 2014/10/17. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kipnis J, Schwartz M. Controlled autoimmunity in CNS maintenance and repair: naturally occurring CD4+ CD25+ regulatory T-Cells at the crossroads of health and disease. Neuromol Med. 2005;7(3):197–206.

    Article  CAS  Google Scholar 

  62. Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M. Neuroprotective autoimmunity: naturally occurring CD4+ CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A. 2002;99(24):15620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stubbe T, Ebner F, Richter D, Engel O, Klehmet J, Royl G, et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab. 2013;33(1):37–47. PMCID: 3597367. Epub 2012/09/13. eng.

    Article  CAS  PubMed  Google Scholar 

  64. Chen Y, Ruetzler C, Pandipati S, Spatz M, McCarron RM, Becker K, et al. Mucosal tolerance to E-selectin provides cell-mediated protection against ischemic brain injury. Proc Natl Acad Sci U S A. 2003;100(25):15107–12. PMCID: 299916. Epub 2003/12/03. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gee JM, Kalil A, Thullbery M, Becker KJ. Induction of immunologic tolerance to myelin basic protein prevents central nervous system autoimmunity and improves outcome after stroke. Stroke. 2008;39(5):1575–82.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li P, Mao L, Liu X, Gan Y, Zheng J, Thomson AW, et al. Essential role of program death 1-ligand 1 in regulatory T-cell-afforded protection against blood–brain barrier damage after stroke. Stroke. 2014;45(3):857–64. PMCID: 3939692. Epub 2014/02/06. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brea D, Agulla J, Rodriguez-Yanez M, Barral D, Ramos-Cabrer P, Campos F, et al. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia. J Cell Mol Med. 2014;18(8):1571–9. Epub 2014/06/04. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Liesz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liesz, A. (2016). Regulatory T Cells in Ischemic Brain Injury. In: Chen, J., Zhang, J., Hu, X. (eds) Non-Neuronal Mechanisms of Brain Damage and Repair After Stroke. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-32337-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32337-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32335-0

  • Online ISBN: 978-3-319-32337-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics