Advertisement

X-Ray Diffraction of Glycosides

  • Marco Brito-Arias
Chapter
  • 583 Downloads

Abstract

X-ray crystallography is a powerful tool for obtaining molecular information regarding bond lengths, bond angles, hydrogen bond interactions, and torsion angles, which are necessary elements for understanding the conformation of glycosides. Improved diffractometers, faster computational processors, and mathematical programs have made possible the structural resolution of simple and complex substances of glycosidic nature particularly those with noncentrosymmetric space groups.

Keywords

Torsion Angle Chair Conformation Envelope Conformation Glycosidic Nature Carbocyclic Nucleoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Furberg S, Petersen CS (1962) Crystal and molecular structure of the p-bromophenylhydrazone of arabinose. Acta Chem Scand 16:1539–1548CrossRefGoogle Scholar
  2. 2.
    Reeves RE (1950) The shape of pyranoside rings. J Am Chem Soc 72:1499–1506CrossRefGoogle Scholar
  3. 3.
    Jeffrey GA, Pople JA, Binkley JS, Vishveshwara S (1978) Application of ab initio molecular orbital calculations to the structural moieties of carbohydrates. J Am Chem Soc 100:373–379CrossRefGoogle Scholar
  4. 4.
    Jeffrey GA (1990) Crystallographic studies of carbohydrates. Acta Cryst B46:89–103CrossRefGoogle Scholar
  5. 5.
    Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358CrossRefGoogle Scholar
  6. 6.
    Brown GM, Levy HA (1963) Sucrose: precise determination of crystal and molecular structure by neutron diffraction. Science 141:921–923CrossRefGoogle Scholar
  7. 7.
    Leung F, Chanzy HD, Pérez S, Marchessault H (1976) Crystal structure of β-D-acetyl cellobiose, C28H38O19. Can J Chem 54:1365–1371CrossRefGoogle Scholar
  8. 8.
    Brito-Arias MA, García-Baez EV, Durán-Páramo E, Rojas-Lima S (2002) Phenylmethyl 2,3,4-tri-O-acetyl-β-D-fucopyranoside. J Chem Crystallogr 32:237–241CrossRefGoogle Scholar
  9. 9.
    Brito-Arias MA, Duran-Paramo E, Mata I, Molins E (2002) A comparative analysis of mono- and disaccharide benzyl fucopyranosides. Acta Cryst C58:o537–o539Google Scholar
  10. 10.
    Rencurosi A, Mitchell EP, Cioci G, Péres S, Pereda-Miranda R, Imberty A (2004) Crystal structure of tricolorin A: molecular rationale for the biological properties of resin glycosides found in some Mexican herbal remedies. Angew Chem Int Ed 43:5918–5922CrossRefGoogle Scholar
  11. 11.
    Matijasic I, Pavlovic G, Trojko R Jr (2003) Methyl 3,6-di-O-pivaloyl-α-D-mannopyranoside. Acta Cryst C59:o184–o186Google Scholar
  12. 12.
    Renaudet O, Dumy P, Philouze C (2001) Methyl 2,3,6-tri-O-benzoyl-4-deoxy-4-methoxyamino-α-D-glucopyranoside. Acta Cryst C57:309–310Google Scholar
  13. 13.
    Suresh CG, Ravindran B, Rao KN, Pathak T (2000) Comparison of the two anomers of methyl 2-(N-benzylamino)-2,3-dideoxy-4,6-O-phenylmethylene-3-C-phenylsulfonyl-D-glucopyranoside. Acta Cryst C56:1030–1032Google Scholar
  14. 14.
    Qiu ZZ, Hui XP, Xu PF (2005) 5-Phenyl-1,3,4-thiadiazol-2-yl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranoside. Acta Cryst C61:o475–o476Google Scholar
  15. 15.
    Low N, Garcia C, Melguizo M, Cobo J, Nogueras M, Sánchez A, López MD, Light ME (2001) A unique axially triacetylated xylopyranose structure, methyl 6-methoxy-2-methyl-1,3-dioxo-4- (2,3,4-tri-O-acetyl-β-D-xylopyranosyl)amino -2,3-dihydro-1H-pyrrolo 3,4-c pyridine-7-carboxylate. Acta Cryst C57:222–224Google Scholar
  16. 16.
    Cheng ZH, Wu T, Bligh SWA, Bashall A, Yu BY (2004) cis-Eudesmane sesquiterpene glycosides from Liriope muscari and Ophiopogon japonicus. J Nat Prod 67:1761–1763CrossRefGoogle Scholar
  17. 17.
    Eriksson L, Stenutz R, Widmalm G (2000) Methyl 4-O-β-L-fucopyranosyl α-D-glucopyranoside hemihydrate. Acta Cryst C56:702–704Google Scholar
  18. 18.
    Stenutz R, Shang M, Serianni S (1999) Methyl β-lactoside (methyl 4-O-β-D-galactopyranosyl-β-D-glucopyranoside) methanol solvate. Acta Cryst C55:1719–1721Google Scholar
  19. 19.
    Yokohama S, Miyazawa T, Litaka Y, Yamaizumi Z, Kasai H, Nishimura S (1979) Three-dimensional structure of hyper-modified nucleoside Q located in the wobbling position of tRNA. Nature 282:107–109CrossRefGoogle Scholar
  20. 20.
    Seela F, Rosemeyer H, Melenewski A, Heithoff EM, Eickmeier H, Reuter H (2002) The α-D anomer of 5-aza-7-deaza-2′-deoxyguanosine. Acta Cryst C58:o142–o144Google Scholar
  21. 21.
    Marquez VE, Ezzitouni A, Russ P, Siddiqui MA, Ford H Jr, Feldman RJ, Mitsuya H, Goerge C, Barchi JJ Jr (1998) HIV-1 reverse transcriptase can discriminate between two conformationally locked carbocyclic AZT triphosphate analogues. J Am Chem Soc 120:2780–2789CrossRefGoogle Scholar
  22. 22.
    Seela F, Chittepu P, He J, Eickmeier H (2004) 6-Aza-2′-deoxy-2′-arabinofluorouridine, a 2′-deoxyribonucleoside with an N-sugar conformation in the solid state and in solution. Acta Cryst C60:o884–o886Google Scholar
  23. 23.
    Seela F, Zhang Y, Xu K, Eickmeier H (2005) 7-Vinyl-8-aza-7-deaza-2′-deoxyadenosine monohydrate. Acta Cryst C61:o60–o062Google Scholar
  24. 24.
    Seela F, Xu K, Eickmeier H (2005) 2′-Deoxy-5-fluorotubercidin. Acta Cryst C61:o408–o410Google Scholar
  25. 25.
    Lin W, Xu K, Eickmeier H, Seela F (2005) 8-Aza-7-deaza-7-propynyladenosine methanol solvate. Acta Cryst C61:o195–o197Google Scholar
  26. 26.
    Seela F, Shaikh KI, Eickmeier H (2005) 7-Deaza-2′-deoxyguanosine. Acta Cryst C61:o151–o153Google Scholar
  27. 27.
    Seela F, Sirivolu VR, He J, Eickmeier H (2005) 3-Bromo-1-(2-deoxy-β-D-erythro-pentofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine: a nucleoside which strongly enhances DNA duplex stability. Acta Cryst C61:o67–o69Google Scholar
  28. 28.
    Lin W, Seela F, Eickmeier H, Reuter H (2004) N6-Etheno derivative of 7-deaza-2,8-diazaadenosine. Acta Cryst C60:o566–o568Google Scholar
  29. 29.
    Seela F, Shaikh KI, Eickmeier H (2004) 7-Deaza-2′-deoxy-7-propynylguanosine. Acta Cryst C60:o489–o491Google Scholar
  30. 30.
    Bats JW, Parsch J, Engels JW (2000) 1-Deoxy-1-(4-fluorophenyl)-β-D-ribofuranose, its hemihydrate, and 1-deoxy-1-(2,4-difluorophenyl)-β-D-ribofuranose: structural evidence for intermolecular C—H⋯F—C interactions. Acta Cryst C56:201–205Google Scholar
  31. 31.
    Seela F, Jawalekar AM, Eickmeier H (2004) 1-(2-Deoxy-β-D-erythro-pentofuranosyl)-4-nitro-1H-indazole. Acta Cryst C60:o387–o389Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Brito-Arias
    • 1
  1. 1.Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional (UPIBI-IPN) Avenida Acueducto s/n Colonia La Laguna TicománCiudad de MéxicoMéxico

Personalised recommendations