Nuclear Magnetic Resonance of Glycosides

  • Marco Brito-Arias


Nuclear magnetic resonance (1H, 13C NMR), X-ray diffraction, and mass spectrometry are considered the most important analytical methods for structural elucidation. Characterization by means of 1H, 13C NMR, monodimensional and bidimensional spectroscopy is a powerful tool for structural assignment of simple and complex glycosides. Pioneering studies [1–4, 48–50] on simple monosaccharides were essential for understanding, through the chemical shifts and coupling constants, the conformational behavior of sugars.


Nuclear Magnetic Resonance Torsion Angle Dipolar Coupling Anomeric Proton Nuclear Overhauser Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lemieux RU, Morgan AR (1965) The preparation and configurations of tri-o-acetyl-α-D-glucopyranose 1,2-(orthoesters). Can J Chem 43:2198–2204CrossRefGoogle Scholar
  2. 2.
    Coxon B (1965) Conformations and proton coupling constants in some methyl 4,6-O-benzylidene-α-D-hexopyranosides. Tetrahedron 21:3481–3503CrossRefGoogle Scholar
  3. 3.
    Hall LD (1964) Nuclear magnetic resonance. Adv Carbohydr Chem 19:51–59Google Scholar
  4. 4.
    Horton D, Lauterbach JH (1975) Specific spectral assignments for acetoxyl-group resonances in proton magnetic resonance spectra of methyl β-D-glucopyranoside tetraacetate. Carbohydr Res 43:9–33CrossRefGoogle Scholar
  5. 5.
    Altona C, Haasnoot CAG (1980) Prediction of anti and gauche vicinal proton–proton coupling constants in carbohydrates: a simple additivity rule for pyranose rings. Org Magn Reson 13:417–429CrossRefGoogle Scholar
  6. 6.
    Breitmaier E (2002) Structure elucidation by NMR. I. Organic chemistry, 3rd edn. John Wiley & Sons, New York, NYCrossRefGoogle Scholar
  7. 7.
    Karplus M (1959) Contact electron‐spin coupling of nuclear magnetic moments. J Chem Phys 30:11–15CrossRefGoogle Scholar
  8. 8.
    Cerda-García-Rojas CM, Zepeda LG, Joseph-Nathan P (1990) A PC program for calculation of dihedral angles from 1H NMR data. Tetrahedron Comput Methodol 3:113–118CrossRefGoogle Scholar
  9. 9.
    Roslund MU, Tahtinen P, Niemitz M, Sjöholm RC (2008) Complete assignments of the H-1 and C-13 chemical shifts and J(H, H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohydr Res 343:101–112CrossRefGoogle Scholar
  10. 10.
    Holland CV, Horton D, Miller MJ, Bhacca NS (1967) Nuclear magnetic resonance studies on acetylated 1-thioaldopyranose derivatives. J Org Chem 32:3077–3086CrossRefGoogle Scholar
  11. 11.
    Hajdukovic G, Martin ML, Sinaÿ P, Pougny JR (1975) Etudes configurationnelles et conformationnelles de quelques chlorures de désoxy-6 β-L-héxopyrannosyle chlorosulfonyles et de leurs glycosides de méthyle. Org Magn Reson 7:366–371CrossRefGoogle Scholar
  12. 12.
    Horton D, Turner WN (1965) Conformational and configurational studies on some acetylated aldopyranosyl halides. J Org Chem 30:3387–3394CrossRefGoogle Scholar
  13. 13.
    Bock K, Thøgerson H (1983) Nuclear magnetic resonance spectroscopy in the study of mono- and oligosaccharides. Annu Rep NMR Spectrosc 13:1–57CrossRefGoogle Scholar
  14. 14.
    Duus JØ, Gotffredsen CH, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100:4589–4614CrossRefGoogle Scholar
  15. 15.
    Delazar A, Byres M, Gibbons S, Kumarasamy Y, Modarresi M, Nahar L, Shoeb M, Sarker SD (2004) Iridoid glycosides from Eremostachys glabra. J Nat Prod 67:1584–1587CrossRefGoogle Scholar
  16. 16.
    Bohr G, Gerhäuser C, Knauft J, Zapp J, Becker H (2005) Anti-inflammatory acylphloroglucinol derivatives from Hops (Humulus lupulus). J Nat Prod 68:1545–1548CrossRefGoogle Scholar
  17. 17.
    Lee SO, Choi SZ, Choi SU, Lee KC, Chin YW, Kim J, Kim YC, Lee KR (2005) Labdane diterpenes from Aster spathulifolius and their cytotoxic effects on human cancer cell lines. J Nat Prod 68:1471–1474CrossRefGoogle Scholar
  18. 18.
    Zou J-H, Yang JS, Zhou L (2004) Acylated flavone C-glycosides from Trollius Ledebouri. J Nat Prod 67:664–666CrossRefGoogle Scholar
  19. 19.
    Diaz F, Chai HB, Mi Q, Su BN, Vigo JS, Graham JG, Cabieses F, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Anthrone and oxanthrone C-glycosides from Picramnia latifolia collected in Peru. J Nat Prod 67:352–356CrossRefGoogle Scholar
  20. 20.
    Manitto P, Monti D, Speranza G (1990) Studies on aloe. Part 6. Conformation and absolute configuration of aloins A and B and related 10-C-glucosyl-9-anthrones. J Chem Soc Perkin 1 1297–1300Google Scholar
  21. 21.
    Neubauer H, Meiler J, Peti W, Griesinger C (2001) NMR structure determination of saccharose and raffinose by means of homo- and heteronuclear dipolar couplings. Helv Chim Acta 84:243–258CrossRefGoogle Scholar
  22. 22.
    Tian F, Al-Hashimi HM, Craighead JL, Prestegard JH (2001) Conformational analysis of a flexible oligosaccharide using residual dipolar couplings. J Am Chem Soc 123:485–492CrossRefGoogle Scholar
  23. 23.
    De Bruyn A (1991) HNMR chemical shift information on the conformation of the glycosidic bond in disaccharides. J Carbohydr Chem 10:159–180CrossRefGoogle Scholar
  24. 24.
    Lemieux RU, Koto S (1974) The conformational properties of glycosidic linkages. Tetrahedron 30:1933–1944CrossRefGoogle Scholar
  25. 25.
    Bose B, Zhao S, Stenutz R, Cloran F, Bondo PB, Bondo G, Hertz B, Carmichael I, Serianni AS (1998) Three-bond C-O-C-C spin-coupling constants in carbohydrates: development of a Karplus relationship. J Am Chem Soc 120:11158–11173CrossRefGoogle Scholar
  26. 26.
    Bock K, Brignole A, Sigurskjold BW (1986) Conformational dependence of 13C nuclear magnetic resonance chemical shifts in oligosaccharides. J Chem Soc Perkin II 1711–1713Google Scholar
  27. 27.
    Tafazzoli M, Ghiasi M (2007) New Karplus equations for 2JHH, 3JHH, 2JCH, 3JCH, 3JCOCH, 3JCSCH, and 3JCCCH in some aldohexopyranoside derivatives as determined using NMR spectroscopy and density functional theory calculations. Carbohydr Res 342:2086–2096CrossRefGoogle Scholar
  28. 28.
    Imberty A (1997) Oligosaccharide structures: theory versus experiment. Curr Opin Struct Biol 7:617–623CrossRefGoogle Scholar
  29. 29.
    Agrawal PK, Pathak AK (1996) Nuclear-magnetic-resonance spectroscopic approaches for the determination of interglycosidic linkage and sequence in oligosaccharides. Phytochem Anal 7:113–130CrossRefGoogle Scholar
  30. 30.
    Tvaroska I, Hricovini M, Petrakova E (1989) An attempt to derive a new Karplus-type equation of vicinal proton-carbon coupling constants for C-O-C-H segments of bonded atoms. Carbohydr Res 189:359–362CrossRefGoogle Scholar
  31. 31.
    Bae YS, Burger JFW, Steynberg JP, Ferreira D, Heminway RW (1994) Flavan and procyanidin glycosides from the bark of blackjack oak. Phytochemistry 35:473–478CrossRefGoogle Scholar
  32. 32.
    Batta G, Liptak A (1984) Long-range 1H-1H spin-spin couplings through the interglycosidic oxygen and the primary structure of oligosaccharides as studied by 2D-NMR. J Am Chem Soc 106:248–250CrossRefGoogle Scholar
  33. 33.
    Prestegard JH, Koerner TAW, Demou PC, Yu RK (1982) Complete analysis of oligosaccharide primary structure using two-dimensional high-field proton NMR. J Am Chem Soc 104:4993–4995CrossRefGoogle Scholar
  34. 34.
    Duc NM, Kasai R, Ohtani K, Ito A, Nham NT, Yamasaki K, Tanaka O (1994) Saponins from Vietnamese ginseng, Panax vietnamensis Ha et Grushv collected in central Vietnam. III. Chem Pharm Bull 42:634–640CrossRefGoogle Scholar
  35. 35.
    Bah M, Pereda-Miranda R (1996) Detailed fab mass-spectrometry and high-resolution NMR investigations of tricolorins a-e, individual oligosaccharides from the resins of ipomoea tricolor (convolvulaceae). Tetrahedron 41:13063–13080CrossRefGoogle Scholar
  36. 36.
    Coxon B, Sari N, Batta G, Pozsgay G (2000) NMR spectroscopy, molecular dynamics, and conformation of a synthetic octasaccharide fragment of the O-specific polysaccharide of Shigella dysenteriae type 1. Carbohydr Res 324:53–65CrossRefGoogle Scholar
  37. 37.
    Sato H, Kajihara Y (2003) Experiment for identification of individual sugar components in oligosaccharides. J Carbohydr Chem 22:339–345CrossRefGoogle Scholar
  38. 38.
    Vliegenthart FGJ, Dorland L, van Halbeek H (1983) High-resolution, 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins. Adv Carbohydr Chem Biochem 41:209–374CrossRefGoogle Scholar
  39. 39.
    Martin-Lomas M, Chapman D (1973) Structural studies on glycolipids, Part I: 220MHz PMR spectra of acetylated galactocerebroside. Chem Phys Lipids 10:152–164CrossRefGoogle Scholar
  40. 40.
    Dabrowski J, Handfland P, Egge H (1980) Structural analysis of glycosphinoglipids by high-resolution 1H nuclear magnetic resonance spectroscopy. Biochemistry 19:5652–5658CrossRefGoogle Scholar
  41. 41.
    Wolfe LS, Senior RG, Ng Yin Kin NMK (1974) The structure of oligosaccharides accumulating in the liver of GMi-gangliosidosis, type-I. J Biol Chem 249:1828–1838Google Scholar
  42. 42.
    Ni F (1994) Recent developments in transferred NOE methods. Prog Nucl Magn Reson Spectros 26:517–606CrossRefGoogle Scholar
  43. 43.
    Peters T, Pinto BM (1996) Structure and dynamics of oligosaccharides: NMR and modeling studies. Curr Opin Struct Biol 6:710–720CrossRefGoogle Scholar
  44. 44.
    Scheffler K, Ernst B, Katopodis A, Magnani JL, Wang WT, Weisemann R, Peters T (1995) Determination of the bioactive conformation of the carbohydrate ligand in the E-selectin/sialyl LewisX complex. Angew Chem Int Ed 34:1841–1844CrossRefGoogle Scholar
  45. 45.
    Wyss DF, Choi JS, Wagner G (1995) Composition and sequence specific resonance assignments of the heterogeneous N-linked glycan in the 13.6 kDa adhesion domain of human CD2 as determined by NMR on the intact glycoprotein. Biochemistry 34:1622–1634CrossRefGoogle Scholar
  46. 46.
    Davies D (1978) Conformations of nucleosides and nucleotides. Prog NMR Spectrosc 12:135–225CrossRefGoogle Scholar
  47. 47.
    Sorenssen MH, Nielsen C, Nielsen P (2001) Synthesis of a bicyclic analogue of AZT restricted in an unusual O 4′-endo conformation. J Org Chem 66:4878–4886CrossRefGoogle Scholar
  48. 48.
    Lemieux RU, Stevens JD (1965) Substitutional and configurational effects on chemical shift in pyranoid carbohydrate derivatives. Can J Chem 43:2059–2070CrossRefGoogle Scholar
  49. 49.
    Kotowycz G, Lemieux RU (1973) Nuclear magnetic resonance in carbohydrate chemistry. Chem Rev 73:669–698CrossRefGoogle Scholar
  50. 50.
    Hall LD, Manville JF, Bhacca NS (1969) Specifically fluorinated carbohydrates. I. Nuclear magnetic resonance studies of hexopyranosyl fluoride derivatives. Can J Chem 47:1–8CrossRefGoogle Scholar
  51. 51.
    Matsumoto K, Kasai R, Ohtani K, Tanaka O (1990) Minor cucurbitane-glycosides from fruits of Siraitia grosvenori (Cucurbitaceae). Chem Pharm Bull 38:2030–2032CrossRefGoogle Scholar
  52. 52.
    Sakai S, Katsumata M, Saitoh Y, Nagasao M, Miyakoshi M, Ida Y, Shoji J (1994) Oleanolic acid saponins from root bark of Aralia elata. Phytochemistry 35:1319–1324CrossRefGoogle Scholar
  53. 53.
    Satoh Y, Sakai S, Katsumata M, Nagasao M, Miyakoshi M, Ida Y, Shoji J (1994) Oleanolic acid saponins from root-bark of Aralia elata. Phytochemistry 36:147–152CrossRefGoogle Scholar
  54. 54.
    Masiiot G, Lavaud C, Delaude C, Binst GV, Miller SPF, Fales HM (1990) Saponins from Tridesmostemon claessenssi. Phytochemistry 29:3291–3298CrossRefGoogle Scholar
  55. 55.
    Nakamura T, Takeda T, Ogihara Y (1994) Studies on the constituents of Calliandra anomala (Kunth) Macbr. II. Structure elucidation of four acylated triterpenoidal saponins. Chem Pharm Bull 42:1111–1115CrossRefGoogle Scholar
  56. 56.
    Razanamahefa B, Demetzos C, Skaltsounis AL, Andriantisiferana M, Tillequin F (1994) Structure and synthesis of a quercetin glucoxyloside from Kalanchoe prolifera (Raym.-Hamet). Heterocycles 38:357–373CrossRefGoogle Scholar
  57. 57.
    Nakanishi T, Tanaka K, Murata H, Somekawa M, Inada A (1994) Phytochemical studies of seeds of medicinal plants. III. Ursolic acid and oleanolic acid glycosides from seeds of Patrinia scabiosaefolia Fischer. Chem Pharm Bull 41:183–186CrossRefGoogle Scholar
  58. 58.
    Thulborg ST, Christensen SB, Cornett C, Olsen CE, Lemmich E (1994) Molluscicidal saponins from a Zimbabwean strain of Phytolacca dodecandra. Phytochemistry 36:753–759CrossRefGoogle Scholar
  59. 59.
    Pereda-Miranda R, Bah M (2003) Biodynamic constituents in the Mexican morning glories: purgative remedies transcending boundaries. Curr Top Med Chem 3:111–131CrossRefGoogle Scholar
  60. 60.
    Falk KE, Karlsson K-A, Samuelson BE (1997) Proton nuclear magnetic resonance analysis of anomeric structure of glycosphingolipids. The globo-series (one to five sugars). Arch Biochem Biophys 192:164–176CrossRefGoogle Scholar
  61. 61.
    Casset F, Peters T, Etzler M, Korchagina E, Nifantev N, Imberty A (1996) Conformational-analysis of blood-group-a trisaccharide in solution and in the binding site of Dolichos biflorus lectin using transient and transferred nuclear Overhauser enhancement (NOE) and rotating-frame NOE experiments. Eur J Biochem 239:710–719CrossRefGoogle Scholar
  62. 62.
    Weimar T, Harris SL, Pitnar JB, Bock K, Pinto BM (1995) Transferred nuclear Overhauser enhancement experiments show that the monoclonal antibody strep 9 selects a local minimum conformation of a streptococcus group A trisaccharide-hapten. Biochemistry 34:13672–13681CrossRefGoogle Scholar
  63. 63.
    Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulandaman ARN, Smolyar A, Reinherz EL, Wagner G (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269:1273–1278CrossRefGoogle Scholar
  64. 64.
    Liang R, Androtti AH, Kahne D (1995) Sensitivity of glycopeptide conformation to carbohydrate chain length. J Am Chem Soc 117:10395–10396CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Brito-Arias
    • 1
  1. 1.Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional (UPIBI-IPN) Avenida Acueducto s/n Colonia La Laguna TicománCiudad de MéxicoMéxico

Personalised recommendations