• Marco Brito-Arias


Carbohydrates covalently attached to proteins and lipids constitute three types of glycoconjugates: proteoglycans, glycoproteins, and glycolipids. Although in the first two cases the types of linkages are the same, chemically proteoglycans behave as polysaccharides and glycoproteins having much less carbohydrate content as proteins. The third important class of glycoconjugates, where carbohydrate residues are covalently attached to a lipidic component, has been classified into four types depending on the lipidic nature: glycoglycerol, glycosyl polyisoprenol pyrophosphates, fatty acid esters, and glycosphingolipids [1].


Glycosidic Linkage Neuraminic Acid Glycosyl Donor Glycoprotein Synthesis Native Chemical Ligation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Robyt JF (1998) Essentials of carbohydrate chemistry. Springer, New York, NYCrossRefGoogle Scholar
  2. 2.
    Morell A, Irvine RA, Sternliev I, Scheinberg IH, Ashwell G (1968) Physical and chemical studies on ceruloplasmin: V. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J Biol Chem 243:155–159Google Scholar
  3. 3.
    Fischer HD, Gonzalez-Noriega A, Sly WS, Morre DJ (1980) Phosphomannosyl-enzyme receptors in rat liver. J Biol Chem 255:9608–9615Google Scholar
  4. 4.
    Stahl P, Schlesinger PH, Sigardson E, Rodman J, Lee YC (1980) Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell 19:207–215CrossRefGoogle Scholar
  5. 5.
    Rudd PM, Elliot T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:370–376CrossRefGoogle Scholar
  6. 6.
    Reitter IN, Means RE, Desrosiers RC (1998) A role for carbohydrates in immune evasion in AIDS. Nat Med 4:679–684CrossRefGoogle Scholar
  7. 7.
    Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 224:1198–1206CrossRefGoogle Scholar
  8. 8.
    Samuel J, Noujaim AA, MacLean GD, Suresh MR, Longenecker BM (1990) Analysis of human tumor associated Thomsen-Friedenreich antigen. Cancer Res 50:4801–4808Google Scholar
  9. 9.
    Fukada M (1985) Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochim Biophys Acta 780:119–150Google Scholar
  10. 10.
    Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664CrossRefGoogle Scholar
  11. 11.
    Lee YC (1992) Biochemistry of carbohydrate–protein interaction. FASEB J 6:3193–3200Google Scholar
  12. 12.
    Dwek R (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720CrossRefGoogle Scholar
  13. 13.
    Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674CrossRefGoogle Scholar
  14. 14.
    Gaastra W, Svennerholm A-M (1996) Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 4:444–452CrossRefGoogle Scholar
  15. 15.
    Goldstein IJ, Winter HC, Poretz RD (1997) Plant lectins: tools for the study of complex carbohydrates. In: Glycoproteins. Elsevier, Amsterdam, pp 403–474CrossRefGoogle Scholar
  16. 16.
    Weis WI, Drickamer K (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65:441–473CrossRefGoogle Scholar
  17. 17.
    Ravishankar R, Ravindran N, Suguna A, Surolia A, Vijayan M (1997) Crystal structure of the peanut lectin-T-antigen complex. Carbohydrate specificity generated by water bridges. Curr Sci 72:855–861Google Scholar
  18. 18.
    Sharon N (1993) Lectin-carbohydrate complexes of plants and animals: an atomic view. Trends Biochem Sci 18:221–226CrossRefGoogle Scholar
  19. 19.
    Sharon N, Lis H (1995) Lectins-proteins with a sweet tooth: functions in cell recognition. Essays Biochem 30:59–75Google Scholar
  20. 20.
    Naismith JH, Field RA (1996) Structural basis of trimannoside recognition by concanavalin A. J Biol Chem 271:972–976CrossRefGoogle Scholar
  21. 21.
    Drickamer K (1988) Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem 263:9557–9560Google Scholar
  22. 22.
    Fukumori F, Takeuchi N, Hagiwara T, Ohbayashi H, Endo T, Kochibe N, Nagata Y, Kobata A (1990) Primary structure of a fucose-specific lectin obtained from a mushroom, Aleuria aurantia. J Biochem 107:190–196Google Scholar
  23. 23.
    Lasky LA (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64:113–139CrossRefGoogle Scholar
  24. 24.
    Hemmerich S, Leffler H, Rosen SD (1995) Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J Biol Chem 270:12035–12047CrossRefGoogle Scholar
  25. 25.
    Kunz H (1987) Synthesis of glycopeptides. Partial structures of biological recognition components. Angew Chem Int Ed 26:294–308CrossRefGoogle Scholar
  26. 26.
    Garg H, Jeanloz RW (1985) Synthetic N- and O-glycosyl derivatives of L-asparagine, L-serine and L-threonine. Adv Carbohydr Chem Biochem 43:135–201CrossRefGoogle Scholar
  27. 27.
    Kunz H (1993) Glycopeptides of biological interest: a challenge for chemical synthesis. Pure Appl Chem 65:1223–1232CrossRefGoogle Scholar
  28. 28.
    Kunz H, Unverzagt C (1984) The allyloxycarbonyl (Aloc) moiety-conversion of an unsuitable into a valuable protecting group for peptide synthesis. Angew Chem Int Ed 23:436–437CrossRefGoogle Scholar
  29. 29.
    März J, Kunz H (1992) Synthesis of selectively deprotectable asparagine glycoconjugates with a Lewis A antigen side chain. Synlett 1992:589–590CrossRefGoogle Scholar
  30. 30.
    Wong CH, Schuster M, Wang P, Sears P (1993) Enzymatic synthesis of N- and O-linked glycopeptides. J Am Chem Soc 115:5893–5901CrossRefGoogle Scholar
  31. 31.
    Mizuno M, Haneda K, Iguchi R, Muramoto I, Kawakami T, Aimoto S, Yamamoto K, Inazu T (1999) Synthesis of a glycopeptide containing oligosaccharides: chemoenzymatic synthesis of eel calcitonin analogues having natural N-linked oligosaccharides. J Am Chem Soc 121:284–290CrossRefGoogle Scholar
  32. 32.
    Sears P, Wong C-H (2001) Toward automated synthesis of oligosaccharides and glycoproteins. Science 291:2344–2350CrossRefGoogle Scholar
  33. 33.
    Deshpande PP, Kim HM, Zatorski A, Park TK, Raguphathi G, Livingston PO, Live D, Danishefsky SJ (1998) Strategy in oligosaccharide synthesis: an application to a concise total synthesis of the KH-1(adenocarcinoma) Antigen. J Am Chem Soc 120:1600–1614CrossRefGoogle Scholar
  34. 34.
    Bertozzi CR, Cook DG, Kobertz WR, Gonzalez-Scarano F, Bednarski MD (1992) Carbon-linked galactosphingolipid analogs bind specifically to HIV-1 gp120. J Am Chem Soc 114:10639–10641CrossRefGoogle Scholar
  35. 35.
    Obei LM, Linardic CM, Karolak LA, Hannun YA (1993) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. Science 259:1769–1780CrossRefGoogle Scholar
  36. 36.
    Xue J, Shao N, Guo Z (2003) First total synthesis of a GPI-anchored peptide. J Org Chem 68:4020–4029CrossRefGoogle Scholar
  37. 37.
    Kempin U, Henning L, Knoll D, Welzel P, Müller D, Markus van Heijenoort J (1997) Moenomycin A: new chemistry that allows to attach the antibiotic to reporter groups, solid supports, and proteins. Tetrahedron 53:17669–17690CrossRefGoogle Scholar
  38. 38.
    Loya S, Reshef V, Mizrachi E, Silbertein C, Rachamim Y, Carmeli S, Hizi A (1998) The inhibition of the reverse transcriptase of HIV-1 by the natural sulfoglycolipids from cyanobacteria: contribution of different moieties to their high potency. J Nat Prod 61:891–895CrossRefGoogle Scholar
  39. 39.
    Persidis A (1997) The Carbohydrate-based drug industry. Nat Biotechnol 15:479–480CrossRefGoogle Scholar
  40. 40.
    Buskas T, Li Y, Boons G-J (2004) The immunogenicity of the tumor-associated antigen Lewis(y) may be suppressed by a bifunctional cross-linker required for coupling to a carrier protein. Chem Eur J 10:3517–3524CrossRefGoogle Scholar
  41. 41.
    Duus JØ, St Hilaire PM, Meldal M, Bock K (1999) Pure Appl Chem 71:755–756CrossRefGoogle Scholar
  42. 42.
    Davis BG (2002) Synthesis of glycoproteins. Chem Rev 102:579–602CrossRefGoogle Scholar
  43. 43.
    Bertozzi CR, Kiessling L (2001) Chemical glycobiology. Science 23:2357–2364CrossRefGoogle Scholar
  44. 44.
    Lee YC, Stowell CP, Krantz MJ (1976) 2-Imino-2- methoxyethyl 1- thioglycosides: new reagents for attaching sugars to proteins. Biochemistry 15:3956–3963CrossRefGoogle Scholar
  45. 45.
    Gray GR (1974) The direct coupling of oligosaccharides to proteins and derivatized gels. Arch Biochem Biophys 163:426–428CrossRefGoogle Scholar
  46. 46.
    McBroom CR, Samanen CH, Goldstein IJ (1972) Carbohydrate antigens: coupling of carbohydrates to proteins by diazonium and phenyl-isothiocyanate reactions. Methods Enzymol 28:212–219CrossRefGoogle Scholar
  47. 47.
    Buss DH, Goldstein IJ (1968) Protein–carbohydrate interaction. Part XIV. Carbohydrates containing groups for the alkylation of proteins. J Chem Soc C 1457–1461Google Scholar
  48. 48.
    Quétard C, Bourgerie S, Normand-Sdiqui N, Mayer R, Strecker G, Midoux P, Roche AC, Monsigny M (1998) Novel glycosynthons for glycoconjugate preparation: oligosaccharylpyroglutamylanilide derivatives. Bioconjug Chem 9:268–276CrossRefGoogle Scholar
  49. 49.
    Lemieux RU, Bindle DR, Baker DA (1975) The properties of a “synthetic” antigen related to the human blood-group Lewis a. J Am Chem Soc 97:4076–4083CrossRefGoogle Scholar
  50. 50.
    Baek WO, Vijayalaksmi MA (1997) Effect of chemical glycosylation of RNase A on the protein stability and surface histidines accessibility in immobilized metal ion affinity electrophoresis (IMAGE) system. Biochim Biophys Acta 1336:394–402CrossRefGoogle Scholar
  51. 51.
    Jiang KY, Pitiot O, Anissimova M, Adenier H, Vijayalakshmi MA (1999) Structure-function relationship in glycosylated alpha-chymotrypsin as probed by IMAC and IMACE. Biochim Biophys Acta 1433:198–209CrossRefGoogle Scholar
  52. 52.
    Kamath VP, Diedrich P, Hindsgaul O (1996) Use of diethyl squarate for the coupling of oligosaccharide amines to carrier proteins and characterization of the resulting neoglycoproteins by MALDI-TOF mass spectrometry. Glycoconjug J 13:315–319CrossRefGoogle Scholar
  53. 53.
    Lemieux GA, Bertozzi CR (1998) Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol 16:506–513CrossRefGoogle Scholar
  54. 54.
    Cervigni SE, Dumy P, Mutter M (1996) Synthesis of glycopeptides and lipopeptides by chemoselective ligation. Angew Chem Int Ed 35:1230–1232CrossRefGoogle Scholar
  55. 55.
    Zhao Y, Kent SBH, Chait BT (1997) Rapid, sensitive structure analysis of oligosaccharidcs. Proc Natl Acad Sci U S A 94:1629–1633CrossRefGoogle Scholar
  56. 56.
    Durieux P, Fernandez-Carneado J, Tuchscherer G (2001) Synthesis of biotinylated glycosulfopeptides by chemoselective ligation. Tetrahedron Lett 42:2297–2299CrossRefGoogle Scholar
  57. 57.
    Davis NJ, Flitsch SL (1991) A novel method for the specific glycosylation of proteins. Tetrahedron Lett 32:6793–6796CrossRefGoogle Scholar
  58. 58.
    Marcaurelle LA, Bertozzi CR (2001) Chemoselective elaboration of O-linked glycopeptide mimetics by alkylation of 3thioGalNAc. J Am Chem Soc 123:1587–1595CrossRefGoogle Scholar
  59. 59.
    Macindoe WM, van Oijen AH, Boons G-J (1998) A unique and highly facile method for synthesising disulfide linked neoglycoconjugates: a new approach for remodelling of peptides and proteins. Chem Commun 847–848Google Scholar
  60. 60.
    Shin I, Jung H-J, Lee MR (2001) Chemoselective ligation of maleimidosugars to peptides/protein for the preparation of neoglycopeptides/neoglycoprotein. Tetrahedron Lett 42:1325–1328CrossRefGoogle Scholar
  61. 61.
    Davis BJ, Lloyd RC, Jones JB (1998) Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach. J Org Chem 63:9614–9615CrossRefGoogle Scholar
  62. 62.
    Davis BG, Maughan MAT, Green MP, Ullman A (2000) Glycomethanethiosulfonates: powerful reagents for protein glycosylation. Tetrahedron Asymmetry 11:245–262CrossRefGoogle Scholar
  63. 63.
    Davis BG, Lloyd RC, Jones JB (2000) Controlled site-selective protein glycosylation for precise glycan structure-catalytic activity relationships. Bioorg Med Chem 8:1527–1535CrossRefGoogle Scholar
  64. 64.
    Ullmann V, Rädisch M, Boos I, Freund J, Pöhner C, Schwarzinger S, Unverzagt C (2012) Convergent solid-phase synthesis of N-glycopeptides facilitated by pseudoprolines at consensus-sequence Ser/Thr residues. Angew Chem Int Ed 51:11566–11570CrossRefGoogle Scholar
  65. 65.
    Pan M, Li S, Li X, Shao F, Liu L, Hu H-G (2014) Synthesis of and specific antibody generation for glycopeptides with arginine N-GlcNAcylation. Angew Chem Int Ed 53:1–6CrossRefGoogle Scholar
  66. 66.
    Paulson JC, Hill RL, Tanabe T, Ashwell G (1977) Reactivation of asialo-rabbit liver binding protein by resialylation with beta-D-galactoside alpha2 leads to 6 sialyltransferase. J Biol Chem 252:8624–8628Google Scholar
  67. 67.
    Tsuboi S, Isogai Y, Hada N, King JK, Hindsgaul O, Fukuda M (1996) 6′-Sulfo sialyl Lex but not 6-sulfo sialyl Lex expressed on the cell surface supports L-selectin-mediated adhesion. J Biol Chem 271:27213–27216CrossRefGoogle Scholar
  68. 68.
    Unversagt C (1997) Building blocks for glycoproteins: synthesis of the ribonuclease B fragment 21–25 containing an undecasaccharide N-glycan. Tetrahedron Lett 32:5627–5630CrossRefGoogle Scholar
  69. 69.
    Geremia RA, Petroni A, Ielpi L, Herissat B (1996) Towards a classification of glycosyltransferases based on amino acid sequence similarities: prokaryotic α-mannosyltransferases. Biochem J 318:133–138CrossRefGoogle Scholar
  70. 70.
    Friedman B, Hubbard SC, Rasmussen JR (1993) Development of a recombinant form of Ceredase (Glucocerebrosidase) for the treatment of Gaucher’s disease. Glycoconjug J 10:257CrossRefGoogle Scholar
  71. 71.
    Witte K, Sears P, Martin R, Wong CH (1997) Enzymatic glycoprotein synthesis: preparation of ribonuclease glycoforms via enzymatic glycopeptide condensation and glycosylation. J Am Chem Soc 119:2114–2118CrossRefGoogle Scholar
  72. 72.
    Kochendoerfer GG, Kent SBH (1999) Chemical protein synthesis. Curr Opin Chem Biol 3:665–671CrossRefGoogle Scholar
  73. 73.
    Wong CH (2005) Protein glycosylation: new challenges and opportunities. J Org Chem 70:4219–4225CrossRefGoogle Scholar
  74. 74.
    Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259:1769–1771CrossRefGoogle Scholar
  75. 75.
    Stallforth P, Adibekian A, Seeberger PH (2008) De novo synthesis of a d-galacturonic acid thioglycoside as key to the total synthesis of a glycosphingolipid from Sphingomonas yanoikuyae. Org Lett 10:1573–1576CrossRefGoogle Scholar
  76. 76.
    Altiti AS, Mootoo DR (2014) Intramolecular nitrogen delivery for the synthesis of C-glycosphingolipids. Application to the C-glycoside of the immunostimulant KRN7000. Org Lett 16:1466–1469CrossRefGoogle Scholar
  77. 77.
    Sarpe VA, Kulkarni S (2014) Expeditious synthesis of mycobacterium tuberculosis sulfolipids SL-1 and Ac2SGL analogues. Org Lett 16:5732–5735CrossRefGoogle Scholar
  78. 78.
    Tamai H, Ando H, Ishida H, Kiso M (2012) First synthesis of a pentasaccharide moiety of ganglioside GAA-7 containing unusually modified sialic acids through the use of N-Troc-sialic acid derivative as a key unit. Org Lett 14:6342–6345CrossRefGoogle Scholar
  79. 79.
    Liu Y, Ruan X, Li X, Li Y (2008) Efficient synthesis of a sialic acid α(2 → 3)galactose building block and its application to the synthesis of ganglioside GM3. J Org Chem 73:4287–4290CrossRefGoogle Scholar
  80. 80.
    Miller N, Williams GM, Brimble MA (2009) Synthesis of fish antifreeze neoglycopeptides using microwave-assisted “Click Chemistry”. Org Lett 11:2409–2412CrossRefGoogle Scholar
  81. 81.
    Singhamahapatra A, Sahoo L, Loganathan D (2013) Clickable glycopeptoids for synthesis of glycopeptide mimic. J Org Chem 78:10329–10336CrossRefGoogle Scholar
  82. 82.
    Seo J, Michaelian N, Owens SC, Dashner ST, Wong AJ, Barron AE, Carrasco MR (2009) Chemoselective and microwave-assisted synthesis of glycopeptoids. Org Lett 11:5210–5213CrossRefGoogle Scholar
  83. 83.
    Wu Z, Guo X, Gu G, Guo Z (2013) Chemoenzymatic synthesis of the human CD52 and CD24 antigen analogues. Org Lett 15:5906–5908CrossRefGoogle Scholar
  84. 84.
    Lee DJ, Mandal K, Harris PW, Brimble MA, Kent SBH (2009) A one-pot approach to neoglycopeptides using orthogonal native chemical ligation and click chemistry. Org Lett 11:5270–5273CrossRefGoogle Scholar
  85. 85.
    Joseph R, Brock Dyer FB, Garner P (2013) Rapid formation of N-glycopeptides via Cu(II)-promoted glycosylative ligation. Org Lett 15:732–735CrossRefGoogle Scholar
  86. 86.
    Corcilius L, Payne RJ (2013) Stereoselective synthesis of sialylated tumor-associated glycosylamino acids. Org Lett 15:5794–5797CrossRefGoogle Scholar
  87. 87.
    Khan SN, Kim A, Grubbs RH, Kwon Y-U (2012) Cross metathesis assisted solid-phase synthesis of glycopeptoids. Org Lett 14:2952–2955CrossRefGoogle Scholar
  88. 88.
    Verez-Bencomo V et al (2004) A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae Type b. Science 305:522–525CrossRefGoogle Scholar
  89. 89.
    Danishefsky SJ, Allen JR (2000) From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew Chem Int Ed 39:836–863CrossRefGoogle Scholar
  90. 90.
    Seeberger PH, Soucy RL, Kwon YU, Snyder DA, Konemitsu T (2004) A convergent, versatile route to two synthetic conjugate anti-toxin malaria vaccines. Chem Commun 1706–1707Google Scholar
  91. 91.
    Bay S, Huteau V, Zarantonelli M-L, Pires R, Ughetto-Monfrin J, Taha M-K, England P, Lafaye P (2004) Phosphorylcholine–carbohydrate–protein conjugates efficiently induce hapten-specific antibodies which recognize both streptococcus pneumoniae and neisseria meningitidis: a potential multitarget vaccine against respiratory infections. J Med Chem 47:3916–3919CrossRefGoogle Scholar
  92. 92.
    Gaidzik N, Kaiser A, Kowalczyk D, Westerlind U, Gerlitzki B, Sinn HP, Schmitt E, Kunz H (2011) Synthetic antitumor vaccines containing MUC1 glycopeptides with two immunodominant domains—induction of a strong immune response against breast tumor tissues. Angew Chem Int Ed 50:9977–9981CrossRefGoogle Scholar
  93. 93.
    Hirano K, Macmillan D, Tezuka K, Tsuji T, Kajihara Y (2009) Design and synthesis of a homogeneous erythropoietin analogue with two human complex-type sialyloligosaccharides: combined use of chemical and bacterial protein expression methods. Angew Chem Int Ed 48:9557–9560CrossRefGoogle Scholar
  94. 94.
    Murakami M, Okamoto R, Izumi M, Kajihara Y (2012) Chemical synthesis of an erythropoietin glycoform containing a complex-type disialyloligosaccharide. Angew Chem Int Ed 51:3567–3572CrossRefGoogle Scholar
  95. 95.
    Li S, Zhang L, Yao Q, Li L, Dong N, Rong J, Gao W, Ding X, Sun L, Chen X, Shao F (2013) Nature 501:242–246CrossRefGoogle Scholar
  96. 96.
    Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS, Lung TW, Mansell A, Riedmaier P, Oates CV, Zaid A, Mühlen S, Crepin VF, Marches O, Ang CS, Williamson NA, O’Reilly LA, Bankovacki A, Nachbur U, Infusini G, Webb AI, Silke J, Strasser A, Frankel G, Hartland EL (2013) Nature 501:247–251CrossRefGoogle Scholar
  97. 97.
    Asahina Y, Komiya S, Ohagi A, Fujimoto R, Tamagaki H, Nakagawa K, Sato T, Akira S, Takao T, Ishii A, Nakahara Y, Hojo H (2015) Chemical synthesis of O-glycosylated human interleukin-2 by the reverse polarity protection strategy. Angew Chem Int Ed 54:8226–8230CrossRefGoogle Scholar
  98. 98.
    Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779CrossRefGoogle Scholar
  99. 99.
    Bernardes GJL, Grayson EJ, Thompson S, Chalker JM, Errey J, Oualid FE, Claridge TDW, Davis BG (2008) From disulfide- to thioether-linked glycoproteins. Angew Chem Int Ed 47:2244–2247CrossRefGoogle Scholar
  100. 100.
    Wittrock S, Becker T, Kunz H (2007) Synthetic vaccines of tumor-associated glycopeptide antigens by immune-compatible thioether linkage to bovine serum albumin. Angew Chem Int Ed 46:5226–5230CrossRefGoogle Scholar
  101. 101.
    Ficht S, Payne RJ, Brik A, Wong C-H (2007) Second-generation sugar-assisted ligation: a method for the synthesis of cysteine-containing glycopeptides. Angew Chem Int Ed 46:5975–5979CrossRefGoogle Scholar
  102. 102.
    Okamoto R, Kajihara Y (2008) Uncovering a latent ligation site for glycopeptide synthesis. Angew Chem Int Ed 47:5402–5406CrossRefGoogle Scholar
  103. 103.
    Piontek C, Varón Silva D, Heinlein C, Pöhner C, Mezzato S, Ring P, Martin A, Schmid FX, Unverzagt C (2009) Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: Part 2. Angew Chem Int Ed 48:1941–1945CrossRefGoogle Scholar
  104. 104.
    Yang B, Dr Yoshida K, Yin Z, Dai H, Kavunja H, El-Dakdouki MH, Sungsuwan S, Dulaney SB, Huang X (2012) Chemical synthesis of a heparan sulfate glycopeptide: syndecan-1. Angew Chem Int Ed 51:10185–10189CrossRefGoogle Scholar
  105. 105.
    Nuhn L, Hartmann S, Palitzsch B, Gerlitzki B, Schmitt E, Zentel R, Kunz H (2013) Water-soluble polymers coupled with glycopeptide antigens and T-cell epitopes as potential antitumor vaccines. Angew Chem Int Ed 52:10652–10656CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Brito-Arias
    • 1
  1. 1.Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional (UPIBI-IPN) Avenida Acueducto s/n Colonia La Laguna TicománCiudad de MéxicoMéxico

Personalised recommendations