Advertisement

Nucleoside Mimetics

  • Marco Brito-Arias
Chapter
  • 600 Downloads

Abstract

Modified nucleosides are useful therapeutic agents being currently used as antitumor, antiviral, and antibiotic agents. Despite the fact that a significant variety of modified nucleosides display potent and selective action against cancer, viral and microbial diseases, the challenge still attracts full attention since most of them do not discriminate between normal and tumor cell and in viral infections resistant strains usually appear during the course of the treatment.

Keywords

Adenosine Deaminase Allylic Alcohol Glycosyl Donor Triethyl Orthoformate Modify Nucleoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mitsuya H, Yarchoan R, Broder S (1990) Molecular targets for AIDS therapy. Science 249:1533–1544CrossRefGoogle Scholar
  2. 2.
    Huryn DM, Okabe M (1992) AIDS-driven nucleoside chemistry. Chem Rev 92:1745–1768CrossRefGoogle Scholar
  3. 3.
    Mitsuya H, Broder S (1986) Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides. Proc Natl Acad Sci U S A 83:1911–1915CrossRefGoogle Scholar
  4. 4.
    Simons C (2001) Nucleoside mimetics: their chemistry and biological properties. Gordon and Breach Science Publishers, AmsterdamGoogle Scholar
  5. 5.
    Agrofolio LA, Guillaizeau I, Saito Y (2003) Palladium-assisted routes to nucleosides. Chem Rev 103:1875–1916CrossRefGoogle Scholar
  6. 6.
    Crisp G, Flynn BL (1993) Palladium-catalyzed coupling of terminal alkynes with 5-(trifluoromethanesulfonyloxy) pyrimidine nucleosides. J Org Chem 58:6614–6619CrossRefGoogle Scholar
  7. 7.
    Mansur TS, Evans CA, Charron M, Korba BE (1997) Discovery of imidazol[1,2-c]pyrimidin-5(6h)-one heterosubstituted nucleoside analogs with potent activity against human hepatitis-b virus in-vitro. Bioorg Med Chem Lett 7:303–308CrossRefGoogle Scholar
  8. 8.
    Farina V, Hauck SI (1991) Palladium-catalyzed approach to 5-substituted uracil and uridine derivatives. Synlett 1991:157–159CrossRefGoogle Scholar
  9. 9.
    Rahim SG, Trivedi N, Bogunovic-Batchelor MV, Hardy GW, Mills G, Selway JW, Snowden W, Littler E, Coe PL, Basnak I, Whale RF, Walker RT (1996) Synthesis and anti-herpes virus activity of 2′-deoxy-4′-thiopyrimidine nucleosides. J Med Chem 39:789–795CrossRefGoogle Scholar
  10. 10.
    Heck RF (1968) Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J Am Chem Soc 90:5518–5526CrossRefGoogle Scholar
  11. 11.
    Hanamoto T, Kobayashi T, Kondo M (2001) Fluoride ion-assisted cross-coupling reactions of (alpha-fluorovinyl)diphenylmethylsilane with aryl iodides catalyzed by Pd(0)/Cu(I) systems. Synlett 2001:281–283CrossRefGoogle Scholar
  12. 12.
    Palmisano G, Santagostino M (1993) Base-modified pyrimidine nucleosides. Efficient entry to 6-derivatized uridines by sn-pd transmetallation-coupling process. Tetrahedron 49:2533–2542CrossRefGoogle Scholar
  13. 13.
    Lister JH (1971) Fused pyrimidines. Part II Purines. In: Weissberger A, Taylor EC (eds) The chemistry of heterocyclic compounds, vol 24. New York, NY, Wiley InterscienceCrossRefGoogle Scholar
  14. 14.
    Shaw G (1984) Purines. In: Comprehensive heterocycle chemistry, vol 5. Pergamon, Oxford, pp 499–605CrossRefGoogle Scholar
  15. 15.
    Hocek M (2003) Syntheses of purines bearing carbon substituents in positions 2, 6 or 8 by metal- or organometal-mediated C–C bond-forming reactions. Eur J Org Chem 2003:245–254CrossRefGoogle Scholar
  16. 16.
    Nair V, Chamberlain SD (1985) Novel photoinduced carbon-carbon bond formation in purines. J Am Chem Soc 107:2183–2185CrossRefGoogle Scholar
  17. 17.
    Nair V, Young D (1984) Synthetic transformations of transient purinyl radicals: formation of mono- and diarylated and heteroarylated nucleosides. J Org Chem 49:4340–4344CrossRefGoogle Scholar
  18. 18.
    Tanji K, Higashino T (1990) Purines. IX. Reaction of 9-phenyl-9H-purine-2-carbonitriles with grignard reagents. Heterocycles 30:435–440CrossRefGoogle Scholar
  19. 19.
    Vorbrügen H, Krolikiewicz K (1976) C-substitution of nucleosides with the aid of the eschenmoser sulfide contraction. Angew Chem Int Ed 15:689–690CrossRefGoogle Scholar
  20. 20.
    Taylor EC, Martin SF (1974) A general method of alkylation and alkenylation heterocycles. J Am Chem Soc 96:8095–8102CrossRefGoogle Scholar
  21. 21.
    Mornet R, Leonard NJ, Theiler M, Doree M (1984) Specificity of the 1-methyladenine receptors in starfish oocytes: synthesis and properties of some 1,8-disubstituted adenines, 1,6-dimethyl-1H-purine, and of the 1-(azidobenzyl)adenines. J Chem Soc Perkin 1 879-885Google Scholar
  22. 22.
    McKenzie TC, Glass D (1987) The reaction of 6-halopurines with phenyl metal complexes. J Heterocycl Chem 24:1551–1553CrossRefGoogle Scholar
  23. 23.
    Nguyen CD, Beaucourt L, Pichat L (1979) Modification de la position 8 des purines nucleosides et de l’adenosine monophosphate cyclique-3′,5′. Reactions de couplage catalytique des organo-magnesiens avec les bromo-8 purines ribosides et bromo-8 adenosine monophosphate cyclique-3′,5′ silyles en presence de dichloro-bis-triphenylphosphine palladium. Tetrahedron Lett 20:3159–3162CrossRefGoogle Scholar
  24. 24.
    Hirota K, Kitade Y, Kanbe Y, Maki Y (1992) Convenient method for the synthesis of C-alkylated purine nucleosides(palladium-catalyzed cross-coupling reaction of halogenopurine nucleosides with trialkylaluminums). J Org Chem 57:5268–5270CrossRefGoogle Scholar
  25. 25.
    Dvořáková H, Dvořák D, Holý A (1996) Coupling of 6-chloropurines with organocuprates derived from grignard-reagents - a convenient route to sec and tert 6-alkylpurines. Tetrahedron Lett 37:1285–1288CrossRefGoogle Scholar
  26. 26.
    Gundersen LL, Bakkestuen AK, Aasen AJ, Øveras H, Rise F (1994) 6-Halopurines in palladium-catalyzed coupling with organotin and organozinc reagents. Tetrahedron 50:9743–9756CrossRefGoogle Scholar
  27. 27.
    Van Aerschot AA, Mamos P, Weyns NJ, Ikeda S, Clercq E, Herdewijn P (1993) Antiviral activity of C-alkylated purine nucleosides obtained by cross-coupling with tetraalkyltin reagents. J Med Chem 36:2938–2942CrossRefGoogle Scholar
  28. 28.
    Vottori S, Camaioni E, Di Francesco E, Volpini R, Monopoli A, Dionisotti S, Ongini E, Cristalli G (1996) 2-alkenyl and 2-alkyl derivatives of adenosine and adenosine-5′-N-ethyluronamide: different affinity and selectivity of E- and Z-diastereomers at A2A adenosine receptors. J Med Chem 39:4211–4217CrossRefGoogle Scholar
  29. 29.
    Edstrom E, Wei Y (1995) A new synthetic route to beta-2′-deoxyribosyl-5-substituted pyrrolo[2,3-d]pyrimidines. Synthesis of 2′-deoxycadeguomycin. J Org Chem 60:5069–5076CrossRefGoogle Scholar
  30. 30.
    Balzarini J, Kang GJ, Dalal M, Herdeweijn P, De Clercq E, Broder S, Johns DG (1987) The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2′,3′-didehydro-2′,3′-dideoxyribonucleosides: a comparison with their parental 2′,3′-dideoxyribonucleosides. Mol Pharmacol 32:162–167Google Scholar
  31. 31.
    Hamamoto Y, Nakashima H, Matsui T, Matsuda A, Ueda T, Yamamoto N (1997) Inhibitory effect of 2′,3′-didehydro-2′,3′-dideoxynucleosides on infectivity, cytopathic effects, and replication of human immunodeficiency virus. Antimicrob Agents Chemother 31:907–910CrossRefGoogle Scholar
  32. 32.
    Manchand PS, Belica PS, Holman MJ, Huang TN, Maehr H, Tam SYK, Yang T (1992) Syntheses of the anti-AIDS drug 2′,3′-dideoxycytidine from cytidine. J Org Chem 57:3473–3478CrossRefGoogle Scholar
  33. 33.
    Robins MJ, Hansske F, Low NW, Park JI (1984) A mild conversion of vicinal diols to alkenes. Efficient transformation of ribonucleosides into 2′-ene and 2′,3′-dideoxynucleosides. Tetrahedron Lett 25:367–370CrossRefGoogle Scholar
  34. 34.
    Lin T-S, Luo MZ, Liu M-C, Zhu Y-L, Gullen E, Dutschman EG, Cheng Y-C (1996) Design and synthesis of 2′,3′-dideoxy-2′,3′-didehydro-beta-L-cytidine (beta-L-d4C) and 2′,3′-dideoxy 2′,3′-didehydro-beta-L-5-fluorocytidine (beta-L-Fd4C), two exceptionally potent inhibitors of human hepatitis B virus (HBV) and potent inhibitors of human immunodeficiency virus (HIV) in vitro. J Med Chem 39:1757–1759CrossRefGoogle Scholar
  35. 35.
    Corey EJ, Winter RAE (1963) A new, stereospecific olefin synthesis from 1,2-diols. J Am Chem Soc 85:2677–2678CrossRefGoogle Scholar
  36. 36.
    Dudycz LW (1989) Synthesis of 2′,3′-dideoxyuridine via the Corey-Winter reaction. Nucleosides Nucleotides 8:35–41CrossRefGoogle Scholar
  37. 37.
    Corey EJ, Hopkins PB (1982) A mild procedure for the conversion of 1,2-diols to olefins. Tetrahedron Lett 23:1979–1982CrossRefGoogle Scholar
  38. 38.
    Mansuri MM, Starrett JE, Wos JA, Tortolani DR, Brodfuerhrer PR, Howell HG, Martin JC (1989) Preparation of 1-(2,3-dideoxy-.beta.-D-glycero-pent-2-enofuranosyl)thymine (d4T) and 2′,3′-dideoxyadenosine (ddA): general methods for the synthesis of 2′,3′-olefinic and 2′,3′-dideoxy nucleoside analogs active against HIV. J Org Chem 54:4780–4785CrossRefGoogle Scholar
  39. 39.
    Shiragami H, Irie Y, Yokozeki H, Yasuda N (1988) Synthesis of 2′,3′-dideoxyuridine via deoxygenation of 2′,3′-O-(methoxymethylene)uridine. J Org Chem 53:5170–5173CrossRefGoogle Scholar
  40. 40.
    Rosowsky A, Solan VC, Sodroski JG, Ruprecht RM (1989) Synthesis of the 2-chloro analogs of 3′-deoxyadenosine, 2′,3′-dideoxyadenosine, and 2′,3′-didehydro-2′,3′-dideoxyadenosine as potential antiviral agents. J Med Chem 32:1135–1140CrossRefGoogle Scholar
  41. 41.
    Kim CH, Marquez VE, Broder S, Mitsuya H, Driscoll JS (1987) Potential anti-AIDS drugs. 2′,3′-dideoxycytidine analogs. J Med Chem 30:862–866CrossRefGoogle Scholar
  42. 42.
    Barton DHR, Jang DO, Jaszberenyi JC (1991) Towards dideoxynucleosides: the silicon approach. Tetrahedron Lett 32:2569–2572CrossRefGoogle Scholar
  43. 43.
    Chu C, Bhadti UT, Doboszowski B, Gu ZP, Kosugi Y, Pullaiah KC, Van Roey P (1989) General syntheses of 2′,3′-dideoxynucleosides and 2′,3′-didehydro-2′,3′-dideoxynucleosides. J Org Chem 54:2217–2225CrossRefGoogle Scholar
  44. 44.
    Fleet GWJ, Son JC, Derome AE (1988) Tetrahedron, Methyl 5-0-tert-butyldiphenylsilyl-2-deoxy-α β -d-threo-pentofuranoside as a divergent intermediate for the synthesis of 3′-substituted-2′,3′-dideoxynucleosides: synthesis of 3′-azido-3′-deoxythymidine, 3′-deoxy-3′-fluorothymidine and 3′-cyano-3′-deoxythymidine. Tetrahedron 44:625–636CrossRefGoogle Scholar
  45. 45.
    Zhou W, Gumina G, Chong Y, Wang J, Schinazi RF, Chu CK (2004) Synthesis, structure–activity relationships, and drug resistance of β-d-3′-Fluoro-2′,3′-unsaturated nucleosides as anti-HIV agents. J Med Chem 47:3399–3408CrossRefGoogle Scholar
  46. 46.
    Hansske F, Robins MJ (1983) Nucleic acid related compounds. 45. A deoxygenative [1,2]-hydride shift rearrangement converting cyclic cis-diol monotosylates to inverted secondary alcohols. J Am Chem Soc 105:6736–6737CrossRefGoogle Scholar
  47. 47.
    Motawia MS, Wendel J, Abdel-Megid AES, Pedersen EB (1989) A convenient route to 3′-amino-3′-deoxythymidine. Synthesis 1989:384–387CrossRefGoogle Scholar
  48. 48.
    Svansson L, Kvarnström I, Classon B, Samuelson B (1991) Synthesis of 2′,3′-dideoxy-3′-C-hydroxymethyl nucleosides as potential inhibitors of HIV. J Org Chem 56:2993–2997CrossRefGoogle Scholar
  49. 49.
    Okabe M, Sun RC, Tam SYK, Todaro LJ, Coffen DL (1988) Synthesis of the dideoxynucleosides “ddC” and “CNT” from glutamic acid, ribonolactone, and pyrimidine bases. J Org Chem 53:4780–4786CrossRefGoogle Scholar
  50. 50.
    Chu CK, Beach JW, Ullas GV, Kosugi Y (1988) An efficient total synthesis of 3′-azido-3′-deoxythymidine (AZT) and 3′-azido-2′,3′-dideoxyuridine (AZDDU, CS-87) from D-mannitol. Tetrahedron Lett 29:5349–5352CrossRefGoogle Scholar
  51. 51.
    Lavallée JF, Just G (1991) Asymmetric synthesis of 3′-carbomethoxymethyl 3′-deoxythymidine via radical cyclization. Tetrahedron Lett 32:3469–3472CrossRefGoogle Scholar
  52. 52.
    Horwitz JP, Chua J, Noel M (1964) Nucleosides. V. The monomesylates of 1-(2′-deoxy-β-D-lyxofuranosyl)thymine. J Org Chem 29:2076–2078CrossRefGoogle Scholar
  53. 53.
    Rideout JL, Barry DW, Lehman SN, St. Clair MH, Furman PA, Freeman GA (1987) E.P. 3,608,606; Chem Abst 106: P38480bGoogle Scholar
  54. 54.
    Zaitseva VE, Dyatkina NB, Krayavskii AA, Skaptsova NV, Turina OV, Gnuchev NV, Gottikh BP, Azhaev AV (1984) Aminonucleosides and their derivatives. Bioorg Khim 10:670–680Google Scholar
  55. 55.
    Wilson JD, Almond MR, Rideout JL (1989) E.P. 295,090; Chem Abst 111: P23914aGoogle Scholar
  56. 56.
    Jung ME, Gardiner JM (1991) Synthetic approaches to 3′-azido-3′-deoxythymidine and other modified nucleosides. J Org Chem 113:2614–2615CrossRefGoogle Scholar
  57. 57.
    Hager MW, Liotta DC (1991) Cyclization protocols for controlling the glycosidic stereochemistry of nucleosides. Application to the synthesis of the antiviral agent 3′-azido-3′-deoxythymidine (AZT). J Am Chem Soc 113:5117–5119CrossRefGoogle Scholar
  58. 58.
    Freeman GA, Shauer SR, Rideout JL, Short SA (1995) 2-amino-9-(3-azido-2,3-dideoxy-β-d-erythro-pentofuranosyl)-6-substituted-9H-purines: synthesis and anti-HIV activity. Bioorg Med Chem 3:447–458CrossRefGoogle Scholar
  59. 59.
    Barai VN, Zinchenko AI, Eroshevskaya LA, Zhernosek EV, Balzarini J, De Clercq E, Mikhailopulo IA (2003) Chemo-enzymatic synthesis of 3-deoxy-β-D-ribofuranosyl purines and study of their biological properties. Nucleosides Nucleotides Nucleic Acids 22:751–753CrossRefGoogle Scholar
  60. 60.
    Izawa K, Takamatsu S, Katayama S, Hirose N, Kosai S, Maruyama T (2003) An industrial process for synthesizing lodenosine (FddA). Nucleosides Nucleotides Nucleic Acids 22:507–517CrossRefGoogle Scholar
  61. 61.
    Haraguchi K, Takeda S, Tanaka H (2003) Ring opening of 4′,5′-epoxynucleosides: a novel stereoselective entry to 4′-C-branched nucleosides. Org Lett 5:1399–1402CrossRefGoogle Scholar
  62. 62.
    Ohrui H, Kohgo S, Kitano K, Sakata S, Kodama E, Yoshimura K, Matsuoka M, Shigeta S, Mitsuya H (2000) Syntheses of 4′-C-ethynyl-β-d-arabino- and 4′-C-ethynyl-2′-deoxy-β-d-ribo-pentofuranosylpyrimidines and -purines and evaluation of their anti-HIV activity. J Med Chem 43:4516–4525CrossRefGoogle Scholar
  63. 63.
    Kondo T, Ohgi T, Goto T (1983) Synthesis of q base (queuine). Chem Lett 419–422Google Scholar
  64. 64.
    Akimoto H, Imamiya E, Hitaka T, Nomura H (1988) Synthesis of queuine, the base of naturally occurring hypermodified nucleoside (queuosine), and its analogues. J Chem Soc Perkin 1 1637–1644Google Scholar
  65. 65.
    Barnett CJ, Grubb LM (2000) Total synthesis of Q base (Queuine). Tetrahedron 56:9221–9225CrossRefGoogle Scholar
  66. 66.
    Knapp S, Nandan SR (1994) Synthesis of capuramycin. J Org Chem 59:281–283CrossRefGoogle Scholar
  67. 67.
    Kurosu M, Li K, Crick DC (2009) Concise synthesis of capuramycin. Org Lett 11:2393–2396CrossRefGoogle Scholar
  68. 68.
    Hotoda H, Daigo M, Takatsu T, Muramatsu A, Kaneko M (2000) Novel intramolecular radical Ar-C glycosylation-lactonization reaction in the transformation of capuramycin. Heterocycles 52:133–136CrossRefGoogle Scholar
  69. 69.
    Myers AG, Gin DY, Rogers DH (1994) Synthetic studies of the tunicamycin antibiotics. Preparation of (+)-tunicaminyluracil, (+)-tunicamycin-V, and 5′-epi-tunicamycin-V. J Am Chem Soc 116:4697–4718CrossRefGoogle Scholar
  70. 70.
    Li J, Yu B (2015) A modular approach to the total synthesis of tunicamycins. Angew Chem Int Ed 54:6618–6621CrossRefGoogle Scholar
  71. 71.
    McGwigan C, Barucki H, Blewett S, Caragio A, Erichsen G, Andrei G, Snoock R, De Clercq E, Balzarini J (2000) Highly potent and selective inhibition of varicella-zoster virus by bicyclic furopyrimidine nucleosides bearing an aryl side chain. J Med Chem 43:4993–4997CrossRefGoogle Scholar
  72. 72.
    Porcari AR, Towsend LB (2004) An improved total synthesis of triciribine: a tricyclic nucleoside with antineoplastic and antiviral properties. Nucleosides Nucleotides Nucleic Acids 23:31–39CrossRefGoogle Scholar
  73. 73.
    Hannesian S, Pernet AG (1976) Synthesis of naturally occurring C-nucleosides, their analogs, and functionalized C-glycosyl precursors. Adv Carbohydr Chem Biochem 33:111–188CrossRefGoogle Scholar
  74. 74.
    De las Heras F, Tam SY, Klein RS, Fox JJ (1976) Nucleosides. XCIV. Synthesis of some C-nucleosides by 1,3-dipolar cycloadditions to 3-(ribofuranosyl) propiolates. J Org Chem 41:84–90CrossRefGoogle Scholar
  75. 75.
    Bobek M, Farkas J, Sorm F (1969) Nucleic acid components and their analogues. CXXIV. Synthesis of 5-β-D-ribofuranosyl-6-azauracil (6-azapseudouridine). Collect Czech Chem Commun 34:1690–1695CrossRefGoogle Scholar
  76. 76.
    Asbun WA, Binkley SB (1968) Synthesis of 5-substituted pyrimidines. II. J Org Chem 33:140–142CrossRefGoogle Scholar
  77. 77.
    Sriswastava PC, Pickering MV, Allen LB, Streeter DG, Campbell MT, Witkowski JT, Sidwell RW, Robins RK (1977) Synthesis and antiviral activity of certain thiazole C-nucleosides. J Med Chem 20:256–262CrossRefGoogle Scholar
  78. 78.
    Ramasamy KS, Bandaru R, Averett D (2000) A new synthetic methodology for tiazofurin. J Org Chem 65:5849–5851CrossRefGoogle Scholar
  79. 79.
    Trummlitz G, Moffat JG (1973) C-Glycosyl nucleosides. III. Facile synthesis of the nucleoside antibiotic showdomycin. J Org Chem 38:1841–1845CrossRefGoogle Scholar
  80. 80.
    Von Krosigk U, Benner SA (2004) Expanding the genetic alphabet: pyrazine nucleosides that support a donor[bond]donor[bond]acceptor hydrogen-bonding pattern. Helv Chim Acta 87:1299–1324CrossRefGoogle Scholar
  81. 81.
    Zhang HC, Daves GD Jr (1992) Syntheses of 2′-deoxypseudouridine, 2′-deoxyformycin B, and 2′,3′-dideoxyformycin B by palladium-mediated glycal-aglycon coupling. J Org Chem 57:4690–4696CrossRefGoogle Scholar
  82. 82.
    Kim G, Kim HS (2000) C-Glycosylation via radical cyclization: synthetic application to a new C-glycoside. Tetrahedron Lett 41:225–227CrossRefGoogle Scholar
  83. 83.
    Chen JJ, Drach JC, Towsend LB (2003) Convergent synthesis of polyhalogenated quinoline C-nucleosides as potential antiviral agents. J Org Chem 68:4170–4178CrossRefGoogle Scholar
  84. 84.
    Hannessian S, Marcotte S, Machaalani S, Huang G (2003) Total synthesis and structural confirmation of malayamycin A: a novel bicyclic C-nucleoside from streptomyces malaysiensis. Org Lett 5:4277–4280CrossRefGoogle Scholar
  85. 85.
    Yokamatsu T, Salto M, Abe H, Suemune K, Matsumoto K, Kihara T, Soeda S, Shimeno H, Shibuya S (1997) Synthesis of (2′S,3′S)-9-(4′-phosphono-4′,4′-difluoro-2′,3′-methanobutyl)guanine and its enantiomer. Evaluation of the inhibitory activity for purine nucleoside phosphorylase. Tetrahedron 53:11297–11306CrossRefGoogle Scholar
  86. 86.
    Katagiri N, Morishita Y, Yamaguchi M (1998) Highly regio- and enantio-selective deacylation of carbocyclic 3′,5′-di-O-acyloxetanocins by lipases. Tetrahedron Lett 39:2613–2616CrossRefGoogle Scholar
  87. 87.
    Deardorff DR, Mattews AJ, McKeenin DS, Craney CL (1986) A highly enantioselective hydrolysis of cis-3,5-diacetoxycyclopent-1-ene: an enzymatic preparation of 3(R)-acetoxy-5(S)-hydroxycyclopent-1-ene. Tetrahedron Lett 27:1255–1256CrossRefGoogle Scholar
  88. 88.
    Deardorff DR, Shambayati S, Myles DC, Heerding D (1988) Studies on the synthesis of (-)-neplanocin A. Homochiral preparation of a key cyclopentanoid intermediate. J Org Chem 53:3614–3615CrossRefGoogle Scholar
  89. 89.
    Deardorff DR, Savin KA, Justman CJ, Karanjawala ZE, Sheppeck JEII, Hager DC, Aydin N (1996) Conversion of allylic alcohols into allylic nitromethyl compounds via a palladium-catalyzed solvolysis: an enantioselective synthesis of an advanced carbocyclic nucleoside precursor1. J Org Chem 61:3616–3622CrossRefGoogle Scholar
  90. 90.
    Herdewijn P, Balzarini J, De Clercq E, Vanderhaeghe H (1985) Resolution of aristeromycin enantiomers. J Chem Med 28:1385–1386CrossRefGoogle Scholar
  91. 91.
    Tenney DJ, Yamanaka G, Voss SW, Cianci CW, Tuomari AV, Sheaffer AK, Alamn M, Colonno RJ (1997) Lobucavir is phosphorylated in human cytomegalovirus-infected and -uninfected cells and inhibits the viral DNA polymerase. Antimicrob Agents Chemother 41:2680–2685Google Scholar
  92. 92.
    Barton DHR, Ramesh M (1990) Tandem nucleophilic and radical chemistry in the replacement of the hydroxyl group by a carbon-carbon bond. A concise synthesis of showdomycin. J Am Chem Soc 112:891–892CrossRefGoogle Scholar
  93. 93.
    Kitagawa M, Hasegawa S, Saito S, Shimada N, Takita T (1991) Synthesis and antiviral activity of oxetanocin derivatives. Tetrahedron Lett 32:3531–3534CrossRefGoogle Scholar
  94. 94.
    Honjo M, Maruyama T, Sato Y, Horii T (1989) Synthesis of the carbocyclic analogue of oxetanocin A. Chem Pharm Bull 37:1413–1415CrossRefGoogle Scholar
  95. 95.
    Bisacchi GS, Braitman A, Cianci CW, Clark JM, Field AK, Hagen ME, Hockstein DR, Malley MF, Mitt T, Slusarchyk WA, Sundeen JE, Terry BJ, Tuomari AV, Weaver ER, Young MG, Zahler R (1991) Synthesis and antiviral activity of enantiomeric forms of cyclobutyl nucleoside analogs. J Med Chem 34:1415–1421CrossRefGoogle Scholar
  96. 96.
    Ohnishi Y, Ichikawa Y (2002) Stereoselective synthesis of a C-glycoside analogue of N-Fmoc-serine β-N-acetylglucosaminide by Ramberg–Bäcklund rearrangement. Bioorg Med Chem Lett 12:997–999CrossRefGoogle Scholar
  97. 97.
    Russ P, Schelling P, Scapozza L, Folkers G, De Clercq E, Marquez VE (2003) Synthesis and biological evaluation of 5-substituted derivatives of the potent antiherpes agent (north)-methanocarbathymine. J Med Chem 46:5045–5054CrossRefGoogle Scholar
  98. 98.
    Ludek OR, Meier C (2003) Synthesis of carbocyclic analogues of thymidine. Nucleosides Nucleotides Nucleic Acids 22:683–685CrossRefGoogle Scholar
  99. 99.
    Zhang HC, Daves GD Jr (1993) Enantio- and diastereoisomers of 2,4-dimethoxy-5-(2,3-dideoxy-5-O-tritylribofuranosyl)pyrimidine. 2′,3′-dideoxy pyrimidine C-nucleosides by palladium-mediated glycal-aglycon coupling. J Org Chem 58:2557–2560CrossRefGoogle Scholar
  100. 100.
    Crimmins MT, Zuercher WJ (2000) Solid-phase synthesis of carbocyclic nucleosides. Org Lett 2:1065–1067CrossRefGoogle Scholar
  101. 101.
    Obara T, Shuto S, Saito Y, Snoeck R, Andrei G, Balzarini J, De Clercq E, Matsuda A (1996) New neplanocin analogues. 7. Synthesis and antiviral activity of 2-halo derivatives of neplanocin A. J Med Chem 39:3847–3892CrossRefGoogle Scholar
  102. 102.
    Saville-Stones EA, Lindell SD, Jennings NS, Head JC, Ford MJ (1991) Synthesis of (±)-2′,3′-didehydro-2′,3′-dideoxy nucleosides via a modified Prins reaction and palladium(0) catalysed coupling. J Chem Soc Perkin 1 2603–2604Google Scholar
  103. 103.
    Gundersen LL, Benneche T, Undheim K (1992) Pd(0)-catalyzed allylic alkylation in the synthesis of (±)carbovir. Tetrahedron Lett 33:1085–1088CrossRefGoogle Scholar
  104. 104.
    Jeong LS, Park JG, Choi WJ, Moon HR, Lee KM, Kim HO, Kim HD, Chun MW, Park HY, Kim K, Sheng YY (2003) Synthesis of halogenated 9-(dihydroxycyclopent-4′-enyl) adenines and their inhibitory activities against S-adenosylhomocysteine hydrolase. Nucleosides Nucleotides Nucleic Acids 22:919–921CrossRefGoogle Scholar
  105. 105.
    Foster RH, Faulds D (1998) Abacavir. Drugs 55:729–736CrossRefGoogle Scholar
  106. 106.
    Crimmins MT, King BW (1996) An efficient asymmetric approach to carbocyclic nucleosides: asymmetric synthesis of 1592U89, a potent inhibitor of HIV reverse transcriptase. J Org Chem 61:4192–4193CrossRefGoogle Scholar
  107. 107.
    Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) Chemoenzymatic synthesis of (–)-carbovir utilizing a whole cell catalysed resolution of 2-azabicyclo[2.2.1]hept-5-en-3-one. J Chem Soc Chem Commun 1120–1121Google Scholar
  108. 108.
    Lim MI, Marquez VE (1983) Total synthesis of (–)-neplanocin A. Tetrahedron Lett 24:5559–5562CrossRefGoogle Scholar
  109. 109.
    Marquez VE, Lim MI, Treanor SP, Plowman J, Priest MA, Markovac A, Khan MS, Kaskar B, Driscoll JS (1988) Cyclopentenylcytosine. A carbocyclic nucleoside with antitumor and antiviral properties. J Med Chem 31:1687–1694CrossRefGoogle Scholar
  110. 110.
    Shearly YF, O’Dell CA, Amett G (1987) Synthesis and antiviral evaluation of carbocyclic analogs of 2-amino-6-substituted-purine 3′-deoxyribofuranosides. J Med Chem 30:1090–1097CrossRefGoogle Scholar
  111. 111.
    Chun BK, Song GY, Chu CK (2001) Stereocontrolled syntheses of carbocyclic C-nucleosides and related compounds. J Org Chem 66:4852–4858CrossRefGoogle Scholar
  112. 112.
    Chu CK, Cutler S (1986) Chemistry and antiviral activities of acyclonucleosides. J Heterocycl Chem 23:289–319CrossRefGoogle Scholar
  113. 113.
    Schaeffer HJ, Beauchamp L, de Miranda P, de Elion G, Bauer DJ, Collins P (1978) 9-(2-Hydroxyethoxymethyl)guanine activity against viruses of the herpes group. Nature 272:583–585CrossRefGoogle Scholar
  114. 114.
    Barrio JR, Bryant JD, Keyser GE (1980) A direct method for the preparation of 2-hydroxyethoxymethyl derivatives of guanine, adenine, and cytosine. J Med Chem 23:572–574CrossRefGoogle Scholar
  115. 115.
    Keyser GE, Bryant JD, Barrio JR (1979) Iodomethylethers from 1,3-dioxolane and 1,3-oxathiolane: preparation of acyclic nucleoside analogs. Tetrahedron Lett 20:3263–3264CrossRefGoogle Scholar
  116. 116.
    Robins MJ, Hatfield PW (1982) Nucleic acid related compounds. 37. Convenient and high-yield syntheses of N-[(2-hydroxyethoxy)methyl] heterocycles as “acyclic nucleoside” analogues. Can J Chem 60:547–553CrossRefGoogle Scholar
  117. 117.
    Naesens L, De Clercq E (1997) Therapeutic potential of HPMPC (Cidofovir), PMEA (Adefovir) and related acyclic nucleoside phosphonate analogues as broad-spectrum antiviral agents. Nucleotides Nucleosides 16:983–992CrossRefGoogle Scholar
  118. 118.
    Dang Q, Liu Y, Erion MD (1998) A new regio-defined synthesis of PMEA. Nucleotides Nucleosides 17:1445–1451CrossRefGoogle Scholar
  119. 119.
    Field AK, Davies ME, de Witt C, Perry HC, Liou R, Germerhausen JL, Karkas JD, Ashton WT, Johnson DB, Tolman RL (1983) 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication. Proc Natl Acad Sci U S A 80:4139–4143CrossRefGoogle Scholar
  120. 120.
    Yokohama M (2000) Synthesis and biological activity of thionucleosides. Synthesis 2000:1637–1655CrossRefGoogle Scholar
  121. 121.
    Van Drannen NA, Freeman GA, Short SA, Harvey R, Jansen R, Szczech G, Koszalka GW (1996) Synthesis and antiviral activity of 2′-deoxy-4′-thio purine nucleosides. J Med Chem 39:538–542CrossRefGoogle Scholar
  122. 122.
    Dyson MR, Coe PL, Walker RT (1991) The synthesis and antiviral activity of some 4′-thio-2′-deoxy nucleoside analogs. J Med Chem 34:2782–2786CrossRefGoogle Scholar
  123. 123.
    Reist EJ, Gueffroy DE, Goodman L (1964) Synthesis of 4-Thio-D- and -L-ribofuranose and the corresponding adenine nucleosides. J Am Chem Soc 86:5658–5663CrossRefGoogle Scholar
  124. 124.
    Reist EJ, Fischer LV, Goodman L (1968) Thio sugars. Synthesis of the adenine nucleosides of 4-thio-D-xylose and 4-thio-D-arabinose. J Org Chem 33:189–192CrossRefGoogle Scholar
  125. 125.
    Ritchie RGS, Vyals DM, Szarek WA (1978) Addition of pseudohalogens to unsaturated carbohydrates. VI. Synthesis of 4′ -thiocordycepin. Can J Chem 56:794–802CrossRefGoogle Scholar
  126. 126.
    Haraguchi K, Nishikawa A, Sasakura E, Tanaka H, Nakamura K, Miyasaka T (1998) Electrophilic addition to 4-thio furanoid glycal: a highly stereoselective entry to 2′-deoxy-4′-thio pyrimidine nucleosides. Tetrahedron Lett 39:3713–3716CrossRefGoogle Scholar
  127. 127.
    Naka T, Nishizono N, Minakawa N, Matsuda A (1999) Nucleosides and nucleotides. 189. Investigation of the stereoselective coupling of thymine with meso-thiolane-3,4-diol-1-oxide derivatives via the Pummerer reaction. Tetrahedron Lett 40:6297–6300CrossRefGoogle Scholar
  128. 128.
    Nishikono N, Koike N, Yamagata Y, Fujii S, Matsuda A (1996) Nucleosides and nucleotides. 159. Synthesis of thietane nucleosides via the Pummerer reaction as a key step. Tetrahedron Lett 37:7569–7572CrossRefGoogle Scholar
  129. 129.
    Bobek M, Whistler RL, Bloch A (1970) Preparation and activity of the 4′-thio-derivatives of some 6-substituted purines nucleosides. J Med Chem 13:411–413CrossRefGoogle Scholar
  130. 130.
    George R, Ritchie S, Szarek WA (1973) Synthesis of 4′-thiocordycepin synthesis of 4′-thiocordycepin. J Chem Soc Chem Commun 686–687Google Scholar
  131. 131.
    Bobek M, Bloch A, Parthasarathy R, Whistler RL (1975) Synthesis and biological activity of 5-fluoro-4′-thiouridine and some related nucleosides. J Med Chem 18:784–787CrossRefGoogle Scholar
  132. 132.
    Secrist JA III, Tiwari KM, Riordan JM, Montgomery JA (1991) Synthesis and biological activity of 2′-deoxy-4′-thio pyrimidine nucleosides. J Med Chem 34:2361–2366CrossRefGoogle Scholar
  133. 133.
    Niedballa U, Vorbrueggen H (1974) Synthesis of nucleosides. 9. General synthesis of N-glycosides. I. Synthesis of pyrimidine nucleosides. J Org Chem 39:3654–3660CrossRefGoogle Scholar
  134. 134.
    Jones MF, Noble SA, Robertson CA, Storer R (1991) Tetrahydrothiophene nucleosides as potential anti-HIV agents. Tetrahedron Lett 32:247–250CrossRefGoogle Scholar
  135. 135.
    Beach JW, Jeong LS, Alves AJ, Pohl D, Kim HO, Chang CN, Doong SL, Schinazi RF, Cheng YC, Chu CK (1992) Synthesis of enantiomerically pure (2′R,5′S)-(-)-1-(2-hydroxymethyloxathiolan-5-yl)cytosine as a potent antiviral agent against hepatitis B virus (HBV) and human immunodeficiency virus (HIV). J Org Chem 57:2217–2219CrossRefGoogle Scholar
  136. 136.
    Li JJ, Gribble GW (2000) Palladium in heterocyclic chemistry. Pergamon Press, New York, NYGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Brito-Arias
    • 1
  1. 1.Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional (UPIBI-IPN) Avenida Acueducto s/n Colonia La Laguna TicománCiudad de MéxicoMéxico

Personalised recommendations