• Marco Brito-Arias


N-glycosides are generated when a sugar component is attached to an aglycon, through a nitrogen atom, establishing as a result a C–N–C linkage. Nucleosides are among the most relevant N-glycosides since they are essential components of DNA, RNA, cofactors, and a variety of antiviral and antineoplastic drugs.


Coupling Reaction Pyrimidine Nucleoside Mediate Reaction Glycosyl Donor Triflic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nishimura S (1982) Minor components in transfer RNA: their characterization, location, and function. Prog Res Mol Biol 12:49–85CrossRefGoogle Scholar
  2. 2.
    Kondo T, Ohgi T, Goto T (1977) Synthesis of 5-methyltubercidin and its α-anomer via condensation of the anion of 4-methoxy-5-methyl-2-methylthiopyrrolo [2, 3-d] pyrimidine and 2, 3, 5-tri-O-benzyl-D-ribofuranosyl Bromide. Agric Biol Chem 41:1501–1507Google Scholar
  3. 3.
    Akimoto H, Imayima E, Hitaka T, Nomura H, Nishimura S (1988) Synthesis of queuine, the base of naturally occurring hypermodified nucleoside (queuosine), and its analogues. J Chem Soc Perkin 1 1637–1644Google Scholar
  4. 4.
    Barnett CJ, Grubb LM (2000) Total synthesis of Q Base (Queuine). Tetrahedron 56:9221–9225CrossRefGoogle Scholar
  5. 5.
    Itaya T (1990) Synthesis of 7-methyl-3-β-D-ribofuranosylwye, the putative structure for the hypermodified nucleoside isolated from archaebacterial transfer ribonucleic acids. Chem Pharm Bull 38:2656–2661CrossRefGoogle Scholar
  6. 6.
    Knapp S (1995) Synthesis of complex nucleoside antibiotics. Chem Rev 95:1859–1876CrossRefGoogle Scholar
  7. 7.
    Migawa MT, Risen LM, Griffey RH, Swayze EE (2005) An efficient synthesis of gougerotin and related analogues using solid- and solution-phase methodology. Org Lett 7:3429–3432CrossRefGoogle Scholar
  8. 8.
    Chida N, Koizumi K, Kitada Y, Yokohama C, Ogawa S (1994) Total synthesis of (+)-polyoxin J starting from myo-inositol. J Chem Soc Chem Commun 111–113Google Scholar
  9. 9.
    Maguire MP, Feldman PL, Rapoport H (1990) Stereoselective synthesis and absolute stereochemistry of sinefungin. J Org Chem 55:948–955CrossRefGoogle Scholar
  10. 10.
    Kalvoda L, Prystas M, Sorm F (1976) Synthesis of exotoxin produced by Bacillus thuringiensis. I. Formation of the ethereal bond between ribose and glucose. Collect Czech Chem Commun 41:788–799CrossRefGoogle Scholar
  11. 11.
    Myers AG, Gin DY, Rogers DH (1994) Synthetic studies of the tunicamycin antibiotics. Preparation of (+)-tunicaminyluracil, (+)-tunicamycin-V, and 5′-epitunicamycin-V. J Am Chem Soc 116:4697–4718CrossRefGoogle Scholar
  12. 12.
    Hahn H, Heitsch H, Rathmann R, Zimmermann G, Bormann C, Zahner H, Konig W (1987) Partialsynthese der Nikkomycine Bx und Kx sowie unnatürlicher Stereoisomerer und Strukturanaloga (Partial synthesis of nikkomycins Bx, Kx and unnatural stereoisomers and structural analogs). Liebigs Ann Chem 1987:803–807CrossRefGoogle Scholar
  13. 13.
    Hanessian S, Kloss J, Sugawara T (1986) Stereocontrolled access to the octosyl acids: total synthesis of octosyl acid A. J Am Chem Soc 108:2758CrossRefGoogle Scholar
  14. 14.
    Ikemoto N, Schreiber SL (1992) Total synthesis of (-)-hikizimycin employing the strategy of two-directional chain synthesis. J Am Chem Soc 114:2524–2536CrossRefGoogle Scholar
  15. 15.
    Knapp S, Nandan SR (1994) Synthesis of capuramycin. J Org Chem 59:281–283CrossRefGoogle Scholar
  16. 16.
    Blackburn GM, Gait M (1990) Nucleic acids in chemistry and biology. IRL, OxfordGoogle Scholar
  17. 17.
    Blaisdell TP, Lee S, Kasaplar P, Sun X, Tan KL (2013) Practical silyl protection of ribonucleosides. Org Lett 15:4710–4713CrossRefGoogle Scholar
  18. 18.
    Ferrero M, Gotor V (2000) Biocatalytic selective modifications of conventional nucleosides, carbocyclic nucleosides, and C-nucleosides. Chem Rev 100:4319–4348CrossRefGoogle Scholar
  19. 19.
    Wong CH, Chen ST, Hennen WJ, Bibbs JA, Wang YF, Liu JLC, Pantoliano MW, Whitlo M, Bryan PN (1990) Enzymes in organic synthesis: use of subtilisin and a highly stable mutant derived from multiple site-specific mutations. J Am Chem Soc 112:945–953CrossRefGoogle Scholar
  20. 20.
    de la Cruz A, Elguero J, Gotor V, Goya P, Martínez A, Moris F (1991) Lipase-mediated acylation of acyclonucleosides. Application to novel fluoroquinolone derivatives. Synth Commun 21:1477–1480CrossRefGoogle Scholar
  21. 21.
    Gotor V, Morís F (1992) Regioselective acylation of 2′-deoxynucleosides through an enzymatic reaction with oxime esters. Synthesis 1992:626–628CrossRefGoogle Scholar
  22. 22.
    Ozaki S, Yamashita K, Konishi T, Maekawa T, Eshima M, Uemura A, Ling L (1995) Enzyme aided regioselective acylation of nucleosides. Nucleosides Nucleotides 14:401–404CrossRefGoogle Scholar
  23. 23.
    Singh HK, Cote GL, Sikirski RS (1993) Enzymatic regioselective deacylation of 2′,3′,5′-tri-o-acylribonucleosides - enzymatic-synthesis of 2′,3′-di-o-acylribonucleosides. Tetrahedron Lett 34:5201–5204CrossRefGoogle Scholar
  24. 24.
    Damkjaer DI, Petersen M, Wengel J (1994) Lipase catalyzed diastereoselective deacetylations of anomeric mixtures of peracetylated 2′-deoxynucleosides. Nucleosides Nucleotides 13:1801–1807CrossRefGoogle Scholar
  25. 25.
    Kawana M (1981) The reactions of benzylated pyrrole and adenine ribonucleosides with Grignard reagents. Chem Lett 10:1541–1542CrossRefGoogle Scholar
  26. 26.
    Kozai S, Fuzikawa T, Harumoto K, Maruyama T (2003) Introduction of a benzyl group onto the 2′-OH of 6-chloropurine 3′-O-benzoylriboside. Nucleosides Nucleotides Nucleic Acids 22:779–781CrossRefGoogle Scholar
  27. 27.
    Serebryany V, Beigelman L (2002) An efficient preparation of protected ribonucleosides for phosphoramidite RNA synthesis. Tetrahedron Lett 43:1983–1985CrossRefGoogle Scholar
  28. 28.
    Taniguchi T, Ogasawara K (1988) Extremely facile and selective nickel-catalyzed allyl ether cleavage. Angew Chem Int Ed 37:1136–1137CrossRefGoogle Scholar
  29. 29.
    Robins MJ, Samano V, Johnson MD (1990) Nucleic acid-related compounds. 58. Periodinane oxidation, selective primary deprotection, and remarkably stereoselective reduction of tert-butyldimethylsilyl-protected ribonucleosides. Synthesis of 9-(.beta.-D-xylofuranosyl)adenine or 3′-deuterioadenosine from adenosine. J Org Chem 55:410–412CrossRefGoogle Scholar
  30. 30.
    Kondo T, Ohgi T, Goto T (1983) Synthesis of Q base (queuine). Chem Lett 12:419–422CrossRefGoogle Scholar
  31. 31.
    Battacharya BK, Rao TS, Revankar GR (1995) Total synthesis of 2′-deoxy-2′-arafluoro-tubercidin, 2′-deoxy-2′-arafluoro-toyocamycin, 2′-deoxy-2′-arafluoro-sangivamycin and certain related nucleosides. J Chem Soc Perkin 1 1543–1550Google Scholar
  32. 32.
    Seela F, Steker H, Driller H, Bindig U (1987) 2-Amino-2′-desoxytubercidin und verwandte Pyrrolo[2,3-d]pyrimidinyl-2′-desoxyribofuranoside. Liebigs Ann Chem 1987:15–19CrossRefGoogle Scholar
  33. 33.
    Seela F, Kehne A (1983) Desoxytubercidin - Synthese eines 2-Desoxyadenosin-Isosteren durch Phasentransferglykosylierung. Liebigs Ann Chem 1983:876–884CrossRefGoogle Scholar
  34. 34.
    Kazimierczuk Z, Cottam HB, Revankar GR, Robins RK (1984) Synthesis of 2′-deoxytubercidin, 2′-deoxyadenosine, and related 2′-deoxynucleosides via a novel direct stereospecific sodium salt glycosylation procedure. J Am Chem Soc 106:6379–6382CrossRefGoogle Scholar
  35. 35.
    Edstrom E, Wei Y (1995) A new synthetic route to β-2′-deoxyribosyl-5-substituted pyrrolo[2,3-d]pyrimidines. Synthesis of 2′-deoxycadeguomycin. J Org Chem 60:5069–5076CrossRefGoogle Scholar
  36. 36.
    Davoll J, Lythgoe B, Todd AR (1948) 185. Experiments on the synthesis of purine nucleosides. Part XIX. A synthesis of adenosine. J Chem Soc 967–969Google Scholar
  37. 37.
    Montgomery JA, Thomas HL (1962) Purine nucleosides. Adv Carbohydr Chem 17:301–369Google Scholar
  38. 38.
    Tipson RS (1939) A note on the action of silver salts of organic acids on bromoacetyl sugars. a new form of tetraacetyl l-rhamnose. J Biol Chem 130:55–59Google Scholar
  39. 39.
    Jung KH, Schmidt RR (1988) Synthese von N-Ethylguanosin-5′-carboxamid. Liebigs Ann Chem 1988:1013–1014CrossRefGoogle Scholar
  40. 40.
    De Clercq E, Gosselin G, Bergogne MC, De Ruddes J, Imbach JL (1987) Systematic synthesis and biological evaluation of alpha- and beta-D-lyxofuranosyl nucleosides of the five naturally occurring nucleic acid bases. J Med Chem 30:982–991CrossRefGoogle Scholar
  41. 41.
    Hilbert GE, Johnson TB (1930) Researches on pyrimidines. CXVII. A method for the synthesis of nucleosides. J Am Chem Soc 52:4489–4494CrossRefGoogle Scholar
  42. 42.
    Vorbrüggen H, Krolikiewicz K, Bennua B (1981) Nucleoside syntheses, (XXII1) Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem Ber 114:1234–1255CrossRefGoogle Scholar
  43. 43.
    Vorbrüggen H, Höfle G (1981) Nucleoside syntheses, (XXIII1) On the mechanism of nucleoside synthesis. Chem Ber 114:1256–1268CrossRefGoogle Scholar
  44. 44.
    Wang P, Chun B-K, Rachakonda S, Du J, Khan N, Shi J, Stec W, Cleary D, Ross BS, Sofia MJ (2009) An efficient and diastereoselective synthesis of PSI-6130: a clinically efficacious inhibitor of HCV NS5B Polymerase. J Org Chem 74:6819–6824CrossRefGoogle Scholar
  45. 45.
    Fukuyama K, Ohrui H, Kuwahara S (2015) Synthesis of EFdA via a diastereoselective aldol reaction of a protected 3-keto furanose. Org Lett 17:828–831CrossRefGoogle Scholar
  46. 46.
    Kageyama M, Nagasawa T, Yoshida M, Ohrui H, Kuwahara S (2011) Enantioselective total synthesis of the potent anti-HIV nucleoside EfdA. Org Lett 13(13):5264–5266CrossRefGoogle Scholar
  47. 47.
    Maier S, Preuss R, Schmidt RR (1990) Synthesis of the ezomycin A basic structure. Liebigs Ann Chem 1990:483–489CrossRefGoogle Scholar
  48. 48.
    Liao J, Sun J, Yu B (2009) An improved procedure for nucleoside synthesis using glycosyl trifluoroacetimidates as donors. Carbohydr Res 344:1034–1038CrossRefGoogle Scholar
  49. 49.
    Mitsunobu O (1981) The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1981:1–28CrossRefGoogle Scholar
  50. 50.
    Marminon C, Pierré A, Pfeiffer B, Pérez V, Léonce S, Joubert A, Bailly C, Renard P, Hickman J, Prudhomme M (2003) Syntheses and antiproliferative activities of 7-azarebeccamycin analogues bearing one 7-azaindole moiety. J Med Chem 46:609–622CrossRefGoogle Scholar
  51. 51.
    Heck RF (1982) Palladium-catalyzed vinylation of organic halides. Org React 27:345–390Google Scholar
  52. 52.
    Miyaura NM, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483CrossRefGoogle Scholar
  53. 53.
    Scott WJ, Crisp GT, Stille JK (1984) Palladium-catalyzed coupling of vinyl triflates with organostannanes. A short synthesis of pleraplysillin-1. J Am Chem Soc 106:4630–4632CrossRefGoogle Scholar
  54. 54.
    Negishi EI (2002) A genealogy of Pd-catalyzed cross-coupling. J Organomet Chem 653:30–40CrossRefGoogle Scholar
  55. 55.
    Sonogashira K (1991) Coupling reactions between sp2 and sp carbon centers. Comprehens Org Chem 3:521–549Google Scholar
  56. 56.
    Hatanaka Y, Hiyama T (1991) Highly selective cross-coupling reactions of organosilicon compounds mediated by fluoride ion and a palladium catalyst. Synlett 1991:845–853CrossRefGoogle Scholar
  57. 57.
    Trost BM, Van Vranken DL (1996) Asymmetric transition metal-catalyzed allylic alkylations. Chem Rev 96:395–422CrossRefGoogle Scholar
  58. 58.
    Tsuji J, Yamakawa T (1979) A convenient method for the preparation of 1-olefins by the palladium catalyzed hydrogenolysis of allylic acetates and allylic phenyl ethers with ammonium formate. Tetrahedron Lett 20:613–616CrossRefGoogle Scholar
  59. 59.
    Ruth JL, Bergstrom DE (1978) C-5 substituted pyrimidine nucleosides. 1. Synthesis of C-5 allyl, propyl, and propenyl uracil and cytosine nucleosides via organopalladium intermediates. J Org Chem 43:2870–2876CrossRefGoogle Scholar
  60. 60.
    Bergstrom DE, Ruth JL (1976) Synthesis of C-5 substituted pyrimidine nucleosides via organopalladium intermediates. J Am Chem Soc 98:1587–1589CrossRefGoogle Scholar
  61. 61.
    Bergstrom DE, Ruth JL, Warwick P (1981) C-5-Substituted pyrimidine nucleosides. 3. Reaction of allylic chlorides, alcohols, and acetates with pyrimidine nucleoside derived organopalladium intermediates. J Org Chem 46:1432–1441CrossRefGoogle Scholar
  62. 62.
    Agrofolio LA, Gillaizeau I, Saito Y (2003) Palladium-assisted routes to nucleosides. Chem Rev 103:1875–1916CrossRefGoogle Scholar
  63. 63.
    Ji L, Xiang S-H, Leng W-L, Hoang KLM, Liu X-W (2015) Palladium-catalyzed glycosylation: novel synthetic approach to diverse N-heterocyclic glycosides. Org Lett 17:1357–1360CrossRefGoogle Scholar
  64. 64.
    Nie S, Li W, Yu B (2014) Total synthesis of nucleoside antibiotic A201A. J Am Chem Soc 136:4157–4160CrossRefGoogle Scholar
  65. 65.
    Li J, Yu B (2015) A modular approach to the total synthesis of tunicamycins. Angew Chem Int Ed 54:6618–6621CrossRefGoogle Scholar
  66. 66.
    Gross A, Abril O, Lewis JM, Geresh S, Whitesides GM (1983) Practical synthesis of 5-phospho-D-ribosyl alpha-1-pyrophosphate (PRPP): enzymatic routes from ribose 5-phosphate or ribose. J Am Chem Soc 105:7428–7435CrossRefGoogle Scholar
  67. 67.
    Timmons SC, Hui JP, Pearson JL, Peltier P, Daniellou R, Nugier-Chauvin C, Soo EC, Syvitski RT, Ferrieres V, Jakeman DL (2008) Enzyme-catalyzed synthesis of furanosyl nucleotides. Org Lett 10:161–163CrossRefGoogle Scholar
  68. 68.
    Eckstein F (ed) (1991) Oligonucleotides and analogs- a practical approach. IRL Press, Oxford University Press, New York, NYGoogle Scholar
  69. 69.
    Li NS, Piccirilli JA (2004) Synthesis of the phosphoramidite derivatives of 2¢ Deoxy-2¢-C-a-methylcytidine and 2′-Deoxy-2′-C-a-hydroxymethylcytidine: analogues for chemical dissection of RNA′s 2¢-hydroxyl group. J Org Chem 69:4751–4959CrossRefGoogle Scholar
  70. 70.
    Ohkubo A, Seio K, Sekine M (2004) A new strategy for the synthesis of oligodeoxynucleotides directed towards perfect O-selective internucleotidic bond formation without base protection. Tetrahedron Lett 45:363–366CrossRefGoogle Scholar
  71. 71.
    Ohkubo A, Kuwayama Y, Nishino Y, Tsunoda H, Seio K, Sekine M (2010) Oligonucleotide synthesis involving deprotection of amidine-type protecting groups for nucleobases under acidic conditions. Org Lett 12:2496–2499CrossRefGoogle Scholar
  72. 72.
    Dai Q, Saikia M, Li N-S, Pan T, Piccirilli JA (2009) Efficient chemical synthesis of AppDNA by adenylation of immobilized DNA-5′-monophosphate. Org Lett 11:1067–1070CrossRefGoogle Scholar
  73. 73.
    Zlatev I, Lavergne T, Debart F, Vasseur J-J, Manoharan M, Morvan F (2010) Efficient solid-phase chemical synthesis of 5′-triphosphates of DNA, RNA, and their analogues. Org Lett 12:2190–2193CrossRefGoogle Scholar
  74. 74.
    De Mesmaeker A, Haner R, Martin P, Moser HE (1995) Antisense oligonucleotides. Acc Chem Res 28:366–374CrossRefGoogle Scholar
  75. 75.
    Damha MJ, Giannaris PA, Marfey PA, Reid LS (1991) Oligodeoxynucleotides containing unnatural L-2′-deoxyribose. Tetrahedon Lett 32:2573–2576CrossRefGoogle Scholar
  76. 76.
    Sekine M, Tsuruoka H, Iimura S, Kusuoku H, Wada T (1996) Studies on steric and electronic control of 2′-3′ phosphoryl migration in 2′-phosphorylated uridine derivatives and its application to the synthesis of 2′-phosphorylated oligouridylates. J Org Chem 61:4087–4100CrossRefGoogle Scholar
  77. 77.
    Mitsuya H, Yarchoan R, Broder S (1990) Molecular targets for AIDS therapy. Science 249:1533–1544CrossRefGoogle Scholar
  78. 78.
    Dempcy R, Browne KA, Bruice TC (1995) Synthesis of the polycationic thymidyl DNG, its fidelity in binding polyanionic DNA/RNA and the stability and nature of the hybrid complexes. J Am Chem Soc 117:6140–6141CrossRefGoogle Scholar
  79. 79.
    Oka N, Kondo T, Fujiwara S, Maizuru Y, Wada T (2009) Stereocontrolled synthesis of oligoribonucleoside phosphorothioates by an oxazaphospholidine approach. Org Lett 11:967–970CrossRefGoogle Scholar
  80. 80.
    Barton DHR, McCombie SW (1975) A new method for the deoxygenation of secondary alcohols. J Chem Soc Perkin 1 1574–1585Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Brito-Arias
    • 1
  1. 1.Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional (UPIBI-IPN) Avenida Acueducto s/n Colonia La Laguna TicománCiudad de MéxicoMéxico

Personalised recommendations