Advertisement

Glycosides, Synthesis and Characterization

  • Marco Brito-Arias
Chapter

Abstract

Monosaccharides are generally defined as aldoses and ketoses connected to a polyhydroxylated skeleton [1]. In an aqueous solution, monosaccharides are subject to internal nucleophilic addition to form cyclic hemiacetal structures. When addition occurs between -OH at C(4) or -OH at C(5), and the carbonyl group, a five- or a six-member ring is formed called a furanose or a pyranose respectively. It is also known that an equilibrium exists between the open and the cyclic form, being displaced to the latter by more than 90 %. Therefore, in aqueous solution, it is more accurate to consider that most sugars are present as cyclic molecules and behave chemically as hemiacetals.

Keywords

Aldol Condensation Aldol Reaction Dihydroxyacetone Phosphate Glycosyl Donor Good Leaving Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Robyt JF (1998) Essentials of carbohydrate chemistry. Springer, New York, NYCrossRefGoogle Scholar
  2. 2.
    Khadem HS (1988) Carbohydrate chemistry. Academic, New York, NYGoogle Scholar
  3. 3.
    Fischer F (1890) Synthesen in der zuckergruppe. Ber Deutsch Chem Gesell 23:2114–2141CrossRefGoogle Scholar
  4. 4.
    Wrodnigg TM, Kartusch C, Illaszewicz C (2008) The Amadori rearrangement as key reaction for the synthesis of neoglycoconjugates. Carbohydr Res 343:2057–2066CrossRefGoogle Scholar
  5. 5.
    Shi X, Wu Y, Li P, Yi H, Yang M, Wang G (2011) Catalytic conversion of xylose to furfural over the solid acid image/ZrO2–Al2O3/SBA-15 catalysts. Carbohydr Res 346:480–487CrossRefGoogle Scholar
  6. 6.
    Rong C, Ding X, Zhu Y, Li Y, Wang L, Qu Y, Ma X, Wang Z (2012) Production of furfural from xylose at atmospheric pressure by dilute sulfuric acid and inorganic salts. Carbohydr Res 350:77–80CrossRefGoogle Scholar
  7. 7.
    Marcotullio G, de Jong W (2011) Furfural formation from d-xylose: the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields. Carbohydr Res 436:1291–1293CrossRefGoogle Scholar
  8. 8.
    Sádaba I, Lima S, Valente AA, López Granados M (2011) Catalytic dehydration of xylose to furfural: vanadyl pyrophosphate as source of active soluble species. Carbohydr Res 346:2785–2791CrossRefGoogle Scholar
  9. 9.
    Yang W, Li P, Bo D, Chang H (2012) The optimization of formic acid hydrolysis of xylose in furfural production. Carbohydr Res 357:53–61CrossRefGoogle Scholar
  10. 10.
    Riansa-ngawong W, Prasertsan P (2011) Optimization of furfural production from hemicellulose extracted from delignified palm pressed fiber using a two-stage process. Carbohydr Res 346:103–110CrossRefGoogle Scholar
  11. 11.
    Fusaro MB, Chagnault V, Postel D (2015) Reactivity of d-fructose and d-xylose in acidic media in homogeneous phases. Carbohydr Res 409:9–19CrossRefGoogle Scholar
  12. 12.
    Rasmussen H, Sørensen HR, Meyer AS (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr Res 385:45–57CrossRefGoogle Scholar
  13. 13.
    Lee J-W, Ha M-G, Yi Y-B, Chung C-H (2011) Chromium halides mediated production of hydroxymethylfurfural from starch-rich acorn biomass in an acidic ionic liquid. Carbohydr Res 346:177–182CrossRefGoogle Scholar
  14. 14.
    Amiri H, Karimi K, Roodpeyma S (2010) Production of furans from rice straw by single-phase and biphasic systems. Carbohydr Res 345:2133–2138CrossRefGoogle Scholar
  15. 15.
    Li C, Zhao ZK, Wang A, Zheng M, Zhang T (2010) Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydr Res 345:1846–1850CrossRefGoogle Scholar
  16. 16.
    Liu J, Tang Y, Wu K, Bi C, Cui Q (2012) Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol. Carbohydr Res 350:20–24CrossRefGoogle Scholar
  17. 17.
    Tong X, Ma Y, Li Y (2010) An efficient catalytic dehydration of fructose and sucrose to 5-hydroxymethylfurfural with protic ionic liquids. Carbohydr Res 345:1698–1701CrossRefGoogle Scholar
  18. 18.
    Cao Q, Guo X, Yao S, Guan J, Wang X, Mu X, Zhang D (2011) Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic liquids with and without a catalyst. Carbohydr Res 346:956–959CrossRefGoogle Scholar
  19. 19.
    Onorato A, Pavlik C, Invernale MA, Berghorn ID, Sotzing GA, Morton MD, Smith MB (2011) Polymer-mediated cyclodehydration of alditols and ketohexoses. Carbohydr Res 346:1662–1670CrossRefGoogle Scholar
  20. 20.
    Zhu H, Cao Q, Li C, Mu X (2011) Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents. Carbohydr Res 346:2016–2018CrossRefGoogle Scholar
  21. 21.
    Yuan Z, Xu C, Cheng S, Leitch M (2011) Catalytic conversion of glucose to 5-hydroxymethyl furfural using inexpensive co-catalysts and solvents. Carbohydr Res 346:2019–2023CrossRefGoogle Scholar
  22. 22.
    Ray D, Mittal N, Chung W-J (2011) Phosphorous pentoxide mediated synthesis of 5-HMF in ionic liquid at low temperature. Carbohydr Res 346:2145–2148CrossRefGoogle Scholar
  23. 23.
    Yang L, Li G, Yang F, Zhang S-M, Fan H-X, Lv X-N (2011) Direct conversion of cellulose to 1-(furan-2-yl)-2-hydroxyethanone in zinc chloride solution under microwave irradiation. Carbohydr Res 346:2304–2307CrossRefGoogle Scholar
  24. 24.
    Wang CH, Fu L, Tong X, Yang Q, Zhang W (2011) Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydr Res 346:182–185Google Scholar
  25. 25.
    Guo X, Cao Q, Jiang Y, Guan J, Wang X, Mu X (2012) Selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by mesoporous SBA-15-SO3H in ionic liquid BmimCl. Carbohydr Res 351:35–41CrossRefGoogle Scholar
  26. 26.
    Tian G, Tong X, Cheng Y, Xue S (2013) Tin-catalyzed efficient conversion of carbohydrates for the production of 5-hydroxymethylfurfural in the presence of quaternary ammonium salts. Carbohydr Res 370:33–37CrossRefGoogle Scholar
  27. 27.
    Casiraghi G, Zanardi F, Rassu G, Spanu P (1995) Stereoselective approaches to bioactive carbohydrates and alkaloids—with a focus on recent syntheses drawing from the chiral pool. Chem Rev 95:1677–1716CrossRefGoogle Scholar
  28. 28.
    Chan T-H, Li C-J (1992) A concise chemical synthesis of (+) 3-deoxy-D-glycero-D-galacto-nonulsonic acid (KDN). J Chem Soc Chem Commun 747–748Google Scholar
  29. 29.
    Gao J, Härtner R, Gordon DM, Whitesides GM, Org J (1994) Synthesis of KDO using indium mediated allylation of 2,3,4,5-di-isopropylidine-D-arabinose in aqueous media. J Org Chem 59:3714–3715CrossRefGoogle Scholar
  30. 30.
    Prenner RH, Binder WH, Schmid W (1994) Indium-assisted allylation in carbohydrate chemistry. Liebigs Ann Chem 1994:73–78CrossRefGoogle Scholar
  31. 31.
    Sato K-I, Miyata T, Tanai I, Yonezawa Y (1994) Convenient syntheses of 3-deoxy-D-manno-2-octulosonic acid (KDO) and 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) derivatives from D-mannose. Chem Lett 23:129–132CrossRefGoogle Scholar
  32. 32.
    Davies SG, Nicholson RL, Smith AD (2002) The asymmetric synthesis of D-galactose via an iterative syn-glycolate aldol strategy. Synlett 2002:1637–1640CrossRefGoogle Scholar
  33. 33.
    Northrup AB, Mangion IK, Hettche F, MacMillan DWC (2004) Enantioselective organocatalytic direct aldol reactions of a-oxyaldehydes: step one in a two-step synthesis of carbohydrates. Angew Chem Int Ed 43:2152–2154CrossRefGoogle Scholar
  34. 34.
    Lubineau A, Augé J, Lubin N (1993) New strategy in the synthesis of 3-deoxy-D-manno-2-octulosonic acid (KDO), 2-deoxy-KDO and thioglycoside of KDO. Tetrahedron 49:4639–4650CrossRefGoogle Scholar
  35. 35.
    Casiraghi G, Pinna L, Rassu G, Spanu P, Ulheri F (1993) Total synthesis of 2,3-dideoxy-C-methylheptose derivatives. Tetrahedron Asymmetry 4:681–686CrossRefGoogle Scholar
  36. 36.
    Gruner SAW, Locardi E, Lohof E, Kessler H (2002) Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds. Chem Rev 2002(102):491–514CrossRefGoogle Scholar
  37. 37.
    Watterson MP, Pickering L, Smith MD, Hudson SJ, Marsh PR, Mordaunt JE, Watkin DJ, Newman CJ, Fleet GWJ (1999) 3-Azidotetrahydrofuran-2-carboxylates: a family of five-ring templated b-amino acid foldamers? Tetrahedron Asymmetry 10:1855–1859CrossRefGoogle Scholar
  38. 38.
    Hungerford NL, Fleet GWJ (2000) Tetrahydrofuran amino acids: b- and g-Azido-tetrahydrofuran carboxylic acid monomers derived from D-glucoheptonolactone as building blocks for b- and g-oligopeptides. J Chem Soc Perkin Trans 1: 3680–3685Google Scholar
  39. 39.
    Dondoni A, Marra A (2000) Methods for anomeric carbon-linked and fused sugar amino acid synthesis: the gateway to artificial glycopeptides. Chem Rev 100:4395–4422CrossRefGoogle Scholar
  40. 40.
    Robins MJ, Parker JMR (1983) Chiral transformations of D-ribose to 2-(beta-D-ribofuranosyl)-L and D-glycine and an anhydroallose hemiacetal used in C-nucleoside synthesis. Can J Chem 61:312–316CrossRefGoogle Scholar
  41. 41.
    Axon JR, Beckwith ALJ (1995) Diastereoselective radical addition to methyleneoxazolidinones: an enantioselective route to α α-amino acids. J Chem Soc Chem Commun (5): 549–550Google Scholar
  42. 42.
    Li G, Angert HH, Sharpless KB (1996) N-halocarbamate salts lead to more efficient catalytic asymmetric aminohydroxylation. Angew Chem Int Ed Engl 35:2813–2819CrossRefGoogle Scholar
  43. 43.
    Jarreton O, Skrydstrup T, Espinosa J-F, Jiménez-Barbero J, Beau J-M (1999) Samarium diiodide promoted C-glycosylation: an application to the stereospecific synthesis of alpha-1,2-C-mannobioside and its derivatives. Chem Eur J 5:430–441CrossRefGoogle Scholar
  44. 44.
    Ohnishi Y, Ichikawa Y (2002) Stereoselective synthesis of a C-glycoside analogue of N-Fmoc-serine β-N-acetylglucosaminide by Ramberg–Bäcklund rearrangement. Bioorg Med Chem Lett 12:997–999CrossRefGoogle Scholar
  45. 45.
    Nolen EG, Watts MM, Fowler DJ (2002) Synthesis of C-linked glycopyranosyl serines via a chiral glycine enolate equivalent. Org Lett 4:3963–3965CrossRefGoogle Scholar
  46. 46.
    Nolen EG, Kurish AJ, Potter JM, Donahue LA, Orlando MD (2005) Stereoselective synthesis of r-C-glucosyl serine and alanine via a cross-metathesis/cyclization strategy. Org Lett 7:3383–3386CrossRefGoogle Scholar
  47. 47.
    Nuzzi A, Massi A, Dondoni A (2008) General synthesis of C-glycosyl amino acids via proline-catalyzed direct electrophilic α-amination of C-glycosylalkyl aldehydes. Org Lett 10:4485–4488CrossRefGoogle Scholar
  48. 48.
    Meyerhof O, Lohmann K (1934) Gleichgewichtsreaktion zwischen Hexosediphosphorsäure und Dioxyacetonephosphorsäure. Biochem Z 271:89–110Google Scholar
  49. 49.
    Gijsen HM, Qiao L, Fitz W, Wong C-H (1996) Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem Rev 96:443–473CrossRefGoogle Scholar
  50. 50.
    Bednarski MD, Waldmann HJ, Whitesides GM (1986) Aldolase-catalyzed synthesis of complex C8 and C9 monosaccharides. Tetrahedron Lett 27:5807CrossRefGoogle Scholar
  51. 51.
    Wong C-H, Halcomb RL, Ichikawa Y, Kajimoto T (1995) Enzymes in organic synthesis—application to the problems of carbohydrate recognition. Angew Chem Int Ed Engl 34:521–546CrossRefGoogle Scholar
  52. 52.
    Boguslawski GJ (1983) J Appl Biochem 5:186–196Google Scholar
  53. 53.
    Durrwachter JR, Wong CH (1988) Fructose-1,6-diphosphate aldolase catalyzed stereoselective synthesis of C-alkyl and N-containing sugars: thermodynamically controlled C–C bond formations. J Org Chem 53:4175–4181CrossRefGoogle Scholar
  54. 54.
    Jung S-H, Jeong JH, Miller P, Wong C-H (1994) An efficient multigram scale preparation of dihydroxyacetone phosphate. J Org Chem 59:7182–7184CrossRefGoogle Scholar
  55. 55.
    Look GC, Fotsch CH, Wong C-H (1993) Enzyme-catalyzed organic synthesis: practical routes to Azasugars and their analogs for use as glycoprocessing inhibitors. Acc Chem Res 26:182–190CrossRefGoogle Scholar
  56. 56.
    Aoyagi T, Yamamoto T, Kojiri K, Morishima H, Nagai M, Hamada M, Takechi T, Umezawa H (1989) Mannostatins A and B: new inhibitors of alpha-D-mannosidase, produced by Streptoverticillium verticillus var. quintum ME3-AG3: taxonomy, production, isolation, physico-chemical properties and biological activities. J Antibiot 42:883–889CrossRefGoogle Scholar
  57. 57.
    Saul R, Moylneux RJ, Elbein AD (1984) Studies on the mechanism of castanospermine inhibition of alpha- and beta-glucosidases. Arch Biochem Biophys 230:668–675CrossRefGoogle Scholar
  58. 58.
    Kayakiri H, Nakamura K, Takase S, Setoi H, Uchida I, Terano H, Hashimoto M, Tada T, Koda S (1991) Structure and synthesis of nectrisine, a new immunomodulator isolated from a fungus. Chem Pharm Bull 39:2807–2812CrossRefGoogle Scholar
  59. 59.
    Baguley BC, Römmele G, Gruner J, Wehrli W (1979) Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur J Biochem 97:345–351CrossRefGoogle Scholar
  60. 60.
    Ichikawa Y, Igarashi Y, Ichikawa M, Suhara Y (1998) 1-N-Iminosugars: potent and selective inhibitors of β-glycosidases. J Am Chem Soc 120:3007–3018CrossRefGoogle Scholar
  61. 61.
    Dondoni A, Merino P, Perrone D (1993) Totally chemical synthesis of azasugars via thiazole intermediates. Stereodivergent routes to (-)-nojirimycin, (-)-mannojirimycin and their 3-deoxy derivatives from serine. Tetrahedron 49:2939–2956CrossRefGoogle Scholar
  62. 62.
    Ziegler T, Straub A, Effenberger F (1988) Enzyme-catalyzed synthesis of 1-Deoxymannojirimycin, 1-Deoxynojirimycin, and 1,4-Dideoxy-1,4-imino-D-arabinitol. Angew Chem Int Ed Engl 27:716–717CrossRefGoogle Scholar
  63. 63.
    Augé C, Gautheron C (1991) Enzymic methods in preparative carbohydrate chemistry. Adv Carbohydr Chem 49:175–237Google Scholar
  64. 64.
    Wang Y-F, Dumas DP, Wong C-H (1993) Chemo-enzymatic synthesis of five-membered aza sugars as inhibitors of fucosidase and fucosyltransferase: an issue of stereochemistry discrimination at transition state. Tetrahedron Lett 34:403–406CrossRefGoogle Scholar
  65. 65.
    Rai R, McAlexander I, Chang C-WT (2005) Org Prep Proced Int 37:339CrossRefGoogle Scholar
  66. 66.
    LeBlanc Y, Fitzsimmons BJ, Springer JP, Rokach J (1989) J Am Chem Soc 111:2995CrossRefGoogle Scholar
  67. 67.
    Dubois J, Tomooka CS, Carreira EM (1997) J Am Chem Soc 119:3179CrossRefGoogle Scholar
  68. 68.
    Jand L, Gin YD (2002) C2-amidoglycosylation. Scope and mechanism of nitrogen transfer. J Am Chem Soc 124:9789–9797CrossRefGoogle Scholar
  69. 69.
    Bovin NV, Zurabyan SE, Khorlii AY (1981) Carbohydr Res 98:25CrossRefGoogle Scholar
  70. 70.
    Reddy G, Madhusudanan KP, Vankar YD (2004) Trimethylsilylnitrate-trimethylsilylazide: a novel reagent system for the synthesis of 2-deoxy glycosyl azides from glycals: application in the synthesis of 2-deoxy-beta-n-glycopeptides. J Org Chem 69:2630CrossRefGoogle Scholar
  71. 71.
    Györgydeák Z, Szilágyi L, Paulsen H (1993) Synthesis, structure and reactions of glycosylazides. J Carbohydr Chem 12(2):139–163CrossRefGoogle Scholar
  72. 72.
    Elchert B, Li J, Wang J, Hui Y, Rai R, Ptak R, Ward P, Takemoto JY, Bensaci M, Chang C-W C-W (2004) Application of the synthetic aminosugars for glycodiversification: synthesis and antimicrobial studies of pyranmycin. J Org Chem 69:1513–1523CrossRefGoogle Scholar
  73. 73.
    Pavliak V, Kovbk P (1991) A short synthesis of 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-beta-D glucopyranose and the corresponding alpha-glucosyl chloride from D-mannose. Carbohydr Res 210:333–337CrossRefGoogle Scholar
  74. 74.
    Dasgupta F, Garegg PJ (1988) Synthesis facile preparation of 3,4-Di-O-acetyl-1,6-anhydro-2-azido-2-deoxy-β-D-glucopyranose and some derivatives thereof: useful precursors for oligosaccharide. Synthesis 1988:626–628CrossRefGoogle Scholar
  75. 75.
    Chou W-C, Chen L, Fang J-M, Wong C-H (1994) A new route to deoxythio sugars based on aldolases. J Am Chem Soc 116:6191–6194CrossRefGoogle Scholar
  76. 76.
    Stick RV, Stubbs KA (2005) From glycoside hydrolases to thioglycoligases: the synthesis of thioglycosides. Tetrahedron Asymmetry 16:321–335CrossRefGoogle Scholar
  77. 77.
    Ogawa S, Matsunaga LH, Palcic MM (1999) Synthesis of ether- and imino-linked octyl N-acetyl-5a′-carba-β-lactosaminides and -isolactosaminides: acceptor substrates for α-(1[→]3/4)-fucosyltransferase, and enzymatic synthesis of 5a′-carbatrisaccharides. Eur J Org Chem 98:631–942CrossRefGoogle Scholar
  78. 78.
    Heingtmann TD, Vassela AT (1999) Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases. Angew Chem Int Ed 38:750–770CrossRefGoogle Scholar
  79. 79.
    Ogawa S, Ohmura M, Hisamatsu S (2001) Synthesis of building blocks for carba-oligosaccharides: 5a′-carbamaltose and 5a′-carbacellobiose, and 5a-carba-beta-D-mannopyranosyl-(l → 4)-D-glucopyrano. Synthesis 2001:312–316CrossRefGoogle Scholar
  80. 80.
    van Well RM, Kartha KP, Field RA (2005) Iodine promoted glycosylation with glycosyl iodides: α-glycoside synthesis. J Carbohydr Chem 24:463–474CrossRefGoogle Scholar
  81. 81.
    Shimizu M, Togo H, Yokohama M (1998) Chemistry of glycosyl fluorides. Synthesis 1998:799–822CrossRefGoogle Scholar
  82. 82.
    Juaristi E, Cuevas G (1995) The anomeric effect. CRC Press, Boca Raton, FLGoogle Scholar
  83. 83.
    Koenigs W, Knorr E (1901) Formation of glycosides from acetylated glycosyl halides. Chem Ber 34:957–981CrossRefGoogle Scholar
  84. 84.
    Oberthur M, Leimkuhler C, Kahne D (2004) A practical method for the stereoselective generation of β-2-deoxy glycosyl phosphates. Org Lett 6:2873–2876CrossRefGoogle Scholar
  85. 85.
    Kaneko M, Herzon SB (2014) Scope and limitations of 2-deoxy- and 2,6-dideoxyglycosyl bromides as donors for the synthesis of β-2-deoxy- and β-2,6-dideoxyglycosides. Org Lett 16:2776–2779CrossRefGoogle Scholar
  86. 86.
    Wang Q, Fu J, Zhang J (2008) A facile preparation of peracylated α-aldopyranosyl chlorides with thionyl chloride and tin tetrachloride. Carbohydr Res 343:2713–2844CrossRefGoogle Scholar
  87. 87.
    Beale TM, Moon PJ, Taylor MS (2014) Organoboron-catalyzed regio- and stereoselective formation of β-2-deoxyglycosidic linkages. Org Lett 16:3604–3607CrossRefGoogle Scholar
  88. 88.
    Paulsen H, Tietz H (1984) Synthons of oligosaccharides. Part XLIX. Synthesis of a trisaccharide from N-acetylneuraminic acid and N-acetyllactosamine. Carbohydr Res 125:47–64CrossRefGoogle Scholar
  89. 89.
    Ravi Kumar HV, Naruchi K, Miyoshi R, Hinou H, Nishimura S-I (2013) A new approach for the synthesis of hyperbranched N-glycan core structures from locust bean gum. Org Lett 15:6278–6281CrossRefGoogle Scholar
  90. 90.
    Meloncelli PJ, Martin AD, Lowary TL (2009) Glycosyl iodides. History and recent advances. Carbohydr Res 344:1110–1122CrossRefGoogle Scholar
  91. 91.
    Mukhopadhyay B, Kartha KPR, Russell DA, Field RA (2004) Streamlined synthesis of per-O-acetylated sugars, glycosyl iodides, or thioglycosides from unprotected reducing sugars. J Org Chem 69:7758–7760CrossRefGoogle Scholar
  92. 92.
    Bickley J, Cottrell JA, Ferguson JR, Field RA, Harding JR, Hughes DL, Kartha KPR, Law JL, Scheinmann F and Stachulski AV (2003) Preparation, X-ray structure and reactivity of a stable glycosyl iodide. Chem Comm (11): 1266–1267Google Scholar
  93. 93.
    Perrie JA, Harding JH, King C, Sinnott D, Stachulski AV (2003) Glycosidation with a disarmed glycosyl iodide: promotion and scope. Org Lett 5:4545–4548CrossRefGoogle Scholar
  94. 94.
    Baldoni L, Marino C (2012) Synthesis of S- and C-galactofuranosides via a galactofuranosyl iodide. Isolable 1-galactofuranosylthiol derivative as a new glycosyl donor. Carbohydr Res 361:70–78CrossRefGoogle Scholar
  95. 95.
    Murakami T, Sato Y, Shibakami M (2008) Stereoselective glycosylations using benzoylated glucosyl halides with inexpensive promoters. Carbohydr Res 343:1283–1394CrossRefGoogle Scholar
  96. 96.
    Williams SJ, Withers SG (2000) Glycosyl fluorides in enzymatic reactions. Carbohydr Res 327:27–46CrossRefGoogle Scholar
  97. 97.
    Tsegay S, Williams RJ, Williams SJ (2012) Synthesis of glycosyl fluorides from thio-, seleno-, and telluroglycosides and glycosyl sulfoxides using aminodifluorosulfinium tetrafluoroborates. Carbohydr Res 357:16–22CrossRefGoogle Scholar
  98. 98.
    Suzuki K, Ito Y, Kanie O (2012) An improved method for the synthesis of protected glycosyl fluorides from thioglycosides using N,N-diethylaminosulfur trifluoride (DAST). Carbohydr Res 359:81–91CrossRefGoogle Scholar
  99. 99.
    López JC, Ventura J, Uriel C, Gómez AM, Fraser-Reid B (2009) Reaction of 1,2-orthoesters with hf–pyridine: a method for the preparation of partly unprotected glycosyl fluorides and their use in saccharide synthesis. Org Lett 11:4128–4131CrossRefGoogle Scholar
  100. 100.
    Roth W, Pigman W (1963) In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry, vol 2. Academic, New York, NY, pp 405–408Google Scholar
  101. 101.
    Lemieux RU, Morgan AR (1965) The preparation and configurations of tri-o-acetyl-α-d-glucopyranose 1,2-(orthoesters). Can J Chem 43:2198–2204CrossRefGoogle Scholar
  102. 102.
    Blanc-Muessen M, Defaye J, Driguez H (1978) Syntheses stereoselectives de 1-thioglycosides. Carbohydr Res 67:305–328CrossRefGoogle Scholar
  103. 103.
    McCloskey C, Coleman GH (1955) β-d-Glucose-2,3,4,6-Tetraacetate. Org Synth 3:434Google Scholar
  104. 104.
    Nicolaou KC, Li J, Zenke G (2000) Total synthesis and biological evaluation of glycolipids plakosides A, B and their analogs. Helv Chim Acta 83:1977–2006CrossRefGoogle Scholar
  105. 105.
    Boons GJ, Demchenko AV (2000) Recent advances in O-sialylation. Chem Rev 100:4539–4566CrossRefGoogle Scholar
  106. 106.
    Maeda H, Ito K, Ishida H, Kiso M, Hasegawa A (1995) Synthetic studies on sialoglycoconjugates 72: synthesis of sulfo-, phosphono- and sialyl-lewis × analogs containing the 1-deoxy- and 1,2-dideoxy-hexopyranoses in place of n-acetylglucosamine residue. J Carbohydr Chem 14:387–406CrossRefGoogle Scholar
  107. 107.
    Li T, Tikad A, Pan W, Vincent SP (2014) β-stereoselective phosphorylations applied to the synthesis of ADP- and polyprenyl-β-mannopyranosides. Org Lett 16:5628–5631CrossRefGoogle Scholar
  108. 108.
    Orlova AV, Shpirt AM, Kulikova NY, Kononov LO (2010) N,N-Diacetylsialyl chloride—a novel readily accessible sialyl donor in reactions with neutral and charged nucleophiles in the absence of a promoter. Carbohydr Res 345:721–730CrossRefGoogle Scholar
  109. 109.
    Matsumura F, Oka N, Wada T (2008) Stereoselective synthesis of α-glycosyl phosphites and phosphoramidites via O-selective glycosylation of H-phosphonate derivatives. Org Lett 10:5297–5300CrossRefGoogle Scholar
  110. 110.
    Shirahata T, Matsuo JM, Teruya S, Hirata N, Kurimoto T, Akimoto N, Sunazuka T, Kaji E, Ōmura S (2010) Improved catalytic and stereoselective glycosylation with glycosyl N-trichloroacetylcarbamate: application to various 1-hydroxy sugars. Carbohydr Res 345:715–860CrossRefGoogle Scholar
  111. 111.
    Sugiyama S, Diakur JM (2000) A convenient preparation of glycosyl chlorides from aryl/alkyl thioglycosides. Org Lett 2:2713–2715CrossRefGoogle Scholar
  112. 112.
    Kahne D, Walker S, Cheng Y, Van Engen D (1989) Glycosylation of unreactive substrates. J Am Chem Soc 111:6881–6882CrossRefGoogle Scholar
  113. 113.
    Plante OJ, Seeberg P (1998) Anomeric phosphorodithioates as novel glycosylating agents. J Org Chem 63:9150–9151CrossRefGoogle Scholar
  114. 114.
    Constantino V, Imperatore C, Fattoruso E, Magnoni A (2000) A mild and easy one-pot procedure for the synthesis of 2-deoxysugars from glycals. Tetrahedron Lett 41:9177–9180CrossRefGoogle Scholar
  115. 115.
    Dios A, Geer A, Marzabadi CH, Franck WR (1998) Novel heterocycloaddition reaction of glycals. J Org Chem 63:6673–6679CrossRefGoogle Scholar
  116. 116.
    Bosse F, Marcaurelle LA, Seeberger PH (2002) Linear synthesis of the tumor-associated carbohydrate antigens Globo-H, SSEA-3, and Gb3. J Org Chem 67:6659–6670CrossRefGoogle Scholar
  117. 117.
    Schmidt RR (1986) Neue Methoden zur Glycosid- und Saccharidsynthese - Gibt es Alternativen zur Koenigs-Knorr-Methode? Angew Chem Int Ed 25:213–236CrossRefGoogle Scholar
  118. 118.
    Guts PGM, Greene TW (1991) Protecting groups in organic synthesis. Wiley, New York, NYGoogle Scholar
  119. 119.
    Olsson L, Jia ZJ, Fraser-Reid B (1998) Tetrachlorophthalimido- and pent-4-enoyl-protected glucosamines as precursors for preparation of 2-azido-2-deoxyglucopyranosyl building blocks. J Org Chem 63:3790–3792CrossRefGoogle Scholar
  120. 120.
    Larson DP, Heathcock CH (1997) Total synthesis of tricolorin A. J Org Chem 62:8406–8418CrossRefGoogle Scholar
  121. 121.
    Liu L, Liu H (1989) Synthesis of cytidine diphosphate-d-quinovose. Tetrahedron Lett 30:35–38CrossRefGoogle Scholar
  122. 122.
    Classon B, Garegg PJ, Oscarson S, Tiden AK (1991) Synthesis of an artificial antigen that corresponds to a disaccharide repeating unit of the capsular polysaccharide of Haemophilus influenzae type d. A facile synthesis of methyl 2-acetamido- 2-deoxy-b-D-mannopyranoside. Carbohydr Res 216:187–196CrossRefGoogle Scholar
  123. 123.
    Nicolaou KC, Ohshima T, van Delft FL, Vourloumis D, Xu JY, Pfefferkorn JS, Kim S (1998) Total synthesis of eleutherobin and eleuthosides A and B. J Am Chem Soc 120:8674–8680CrossRefGoogle Scholar
  124. 124.
    Kitagawa I, Ohashi K, Baek NI, Sakagami M, Yoshikawa M, Shibuya H (1997) Indonesian medicinal plants. XIX. (1) Chemical structures of four additional resin-glycosides, mammosides A, B, H1, and H2, from the tuber of Merremia mammosa (Convolvulaceae). Chem Pharm Bull 45:786–794CrossRefGoogle Scholar
  125. 125.
    Ellervik V, Magnusson G (1998) A novel donor for stereoselective α-sialylation; efficient synthesis of an α (2–8)-linked bis-sialic acid unit. J Org Chem 63:9314–9322CrossRefGoogle Scholar
  126. 126.
    Crich D, Li H (2002) Synthesis of the salmonella type E1 core trisaccharide as a probe for the generality of 1-benzenesulfinyl piperidine/triflic anhydride combination for glycosidic bond formation from thioglycosides. J Org Chem 67:4640–4646CrossRefGoogle Scholar
  127. 127.
    Frechét JM (1980) In: Hodge P, Sherrington DC (eds) Polymer-supported reactions. Wiley, New York, NY, pp 407–434Google Scholar
  128. 128.
    Cross GG, Whitfield DM (1998) Simplifying oligosaccharide synthesis - boronate diesters as cleavable protecting groups. Synlett 1998:487–488CrossRefGoogle Scholar
  129. 129.
    Koviak JL, Chapell MD, Halcomb RL (2001) Design and synthesis of conformationally constrained glycosylated amino acids. J Org Chem 66:2318–2326CrossRefGoogle Scholar
  130. 130.
    Wong CH, Ye XS, Zhang Z (1998) Assembly of oligosaccharide libraries with a designed building block and an efficient orthogonal protection–deprotection strategy. J Am Chem Soc 120:7137–7138CrossRefGoogle Scholar
  131. 131.
    Lakhmiri R, Lhoste P, Sinou D (1989) Allyl ethyl carbonate/palladium (0), a new system for the one step conversion of alcohols into allyl ethers under neutral conditions. Tetrahedron Lett 30:4669–4672CrossRefGoogle Scholar
  132. 132.
    Chaudhary SK, Hernández O (1979) A simplified procedure for the preparation of triphenylmethylethers. Tetrahedron Lett 20:95–98CrossRefGoogle Scholar
  133. 133.
    Hart TW, Metcalfe DA, Scheinmann F (1979) Total synthesis of (±)-prostagladin D1: use of triethylsilyl protecting groups. J Chem Soc Chem Commun 156–159Google Scholar
  134. 134.
    Oikawa M, Wada A, Okazaki F, Kusumoto S (1996) Acidic, selective monoacylation of vic-diols. J Org Chem 61:4469–4471CrossRefGoogle Scholar
  135. 135.
    Matsuo I, Isomura M, Walton R, Ajisaka K (1996) A new strategy for the synthesis of the core trisaccharide of asparagine-linked sugar chains. Tetrahedron Lett 37:8795–8798CrossRefGoogle Scholar
  136. 136.
    Theil F, Schick H (1991) An improved procedure for the regioselective acetylation of monosaccharide derivatives by pancreatin-catalyzed transesterification in organic solvents. Synthesis 1991:533–535CrossRefGoogle Scholar
  137. 137.
    Smith AB III, Hale KJ (1989) An enantioselective synthesis of the C(10) to C(23) backbone of the potent immunosuppressant FK506. Tetrahedron Lett 30:1037–1040CrossRefGoogle Scholar
  138. 138.
    Yamada H, Harada T, Takahashi T (1994) Synthesis of an elicitor-active hexaglucoside analog by a one-pot, two-step glycosidation procedure. J Am Chem Soc 116:7919–7920CrossRefGoogle Scholar
  139. 139.
    Wang G, Ella-Menye J-R, St. Martin M, Yang H, Williams K (2008) Regioselective esterification of vicinal diols on monosaccharide derivatives via mitsunobu reactions. Org Lett 10:4203–4206CrossRefGoogle Scholar
  140. 140.
    Liav A, Goren MB. (1984) Sulfate as a blocking group in alkali-catalyzed permethylation: an alternative synthesis of 3,4,6-tri-O-methyl-D-glucose Carbohydr Res. 131:C8–10Google Scholar
  141. 141.
    Guiso M, Procaccio C, Fizzano MR, Piccioni F (1997) Methylene acetals as protecting groups – an improved preparation method Tetrahedron Lett. 38, 4291–4294Google Scholar
  142. 142.
    Cai J, Davison BE, Ganellin CR, Thaisrivongs S (1995) New 3,4-O-isopropylidene derivatives of d- and l-glucopyranosides. Tetrahedron Lett 36:6535–6536CrossRefGoogle Scholar
  143. 143.
    Binkley RW, Goewey GS, Johnston JC (1984) Regioselective ring opening of selected benzylidene acetals. A photochemically initiated reaction for partial deprotection of carbohydrates. J Org Chem 49:992–996CrossRefGoogle Scholar
  144. 144.
    Arasappan A, Fuchs PL (1995) Regiospecific 4,6-functionalization of pyranosides via dimethylboron bromide-mediated cleavage of phthalide orthoesters. J Am Chem Soc 117:177–183CrossRefGoogle Scholar
  145. 145.
    Jiang L, Chan TH (1998) Regioselective acylation of hexopyranosides with pivaloyl chloride. J Org Chem 63:6035–6038CrossRefGoogle Scholar
  146. 146.
    Tatsuta K, Akimoto K, Annaka M, Ohno Y, Kinoshita M (1985) Enantiodivergent total syntheses of nanaomycins and their enantiomers, kalafungins. Bull Chem Soc Jpn 58:1699–1706CrossRefGoogle Scholar
  147. 147.
    Ley SV, Mio S (1996) Dispiroketals in synthesis (Part 21)1: use of chiral 2,2′-bis(halomethyl)dihydropyrans as new protecting and resolving agents for 1,2-diols. Synlett 1996:789–790CrossRefGoogle Scholar
  148. 148.
    Fernandez-Bolaños JG, García S, Fernandez-Bolaños J, Diánez MJ, Estrada MD, López-Castro A, Pérez Garrido S (2003) Synthesis of 4-C-sulfoaminosugar derivatives: isomerization of 4-C-sulfogalactosamine to its gluco epimer. Tetrahedron Asymmetry 14:3761–3768CrossRefGoogle Scholar
  149. 149.
    Lohman JGS, Seeberger PH (2003) One-pot conversion of glycals to cis-1,2-isopropylidene-α-glycosides. J Org Chem 68:7541–7543CrossRefGoogle Scholar
  150. 150.
    Liang H, Grindley TB (2004) An efficient synthesis of derivatives of 2‐acetamido‐4‐amino‐2,4,6‐trideoxy‐D‐galactopyranose. J Carbohydr Chem 23:71–82CrossRefGoogle Scholar
  151. 151.
    Adinolfi M, Borone G, Guariniello L, Iadonisi A (2000) An easy and efficient approach for the installation of alkoxycarbonyl protecting groups on carbohydrate hydroxyls. Tetrahedron Lett 41:9305–9309CrossRefGoogle Scholar
  152. 152.
    Forsén S, Lindberg B, Silvander BG (1965) Trichloroethylidene derivatives of d-glucose. Acta Chem Scand 19:359–369CrossRefGoogle Scholar
  153. 153.
    Koch K, Chambers RJ (1993) An improved synthesis of 4-deoxy-4-fluoro-d-galactopyranosyl derivatives. Carbohydr Res 241:295–299CrossRefGoogle Scholar
  154. 154.
    Basu N, Maity SK, Roy S, Singha S, Ghosh R (2011) FeCl3 mediated arylidenation of carbohydrates. Carbohydr Res 346:534–539CrossRefGoogle Scholar
  155. 155.
    Khan AT, Khan MM, Adhikary AA (2011) Tetrabutylammonium tribromide (TBATB): a mild and efficient catalyst for O-isopropylidenation of carbohydrates. Carbohydr Res 346:673–677CrossRefGoogle Scholar
  156. 156.
    Ko K-S, Park G, Yu Y, Pohl NL (2008) Protecting-group-based colorimetric monitoring of fluorous-phase and solid-phase synthesis of oligoglucosamines. Org Lett 10:5381–5384CrossRefGoogle Scholar
  157. 157.
    Wahlstrom JL, Ronald RC (1998) Detritylation of ethers using iodine–alcohol reagents: an acid-catalyzed reaction. J Org Chem 63:6021–6022CrossRefGoogle Scholar
  158. 158.
    Classon B, Garegg PJ, Samuelson B (1984) The p-Methoxybenzyl Group as Protective Group of the Anomeric Centre. Selective conversions of hydroxy groups into bromo groups in p-methoxybenzyl 2-deoxy-2-phthalimido-beta-D-glucopyranoside. Acta Chem Scan 38B:419–422CrossRefGoogle Scholar
  159. 159.
    López R, Montero E, Sanchez F, Cañada J, Fernandez-Mayoralas A (1994) Regioselective acetylations of Alkyl β-D-xylopyranosides by use of lipase PS in organic solvents and application to the chemoenzymatic synthesis of oligosaccharides. J Org Chem 59:7027–7032CrossRefGoogle Scholar
  160. 160.
    Miethchen R, Holz J, Prade H, Liptak A (1992) Amphiphilic and mesogenic carbohydrates - II. synthesis and characterisation of mono-o-(n-alkyl)-d-glucose derivates. Tetrahedron 48:3061–3068CrossRefGoogle Scholar
  161. 161.
    Collins PM, Manro A, Opara-Mottah EC, Ali MH (1988) Free radical brominative ring opening of 1,2-O-benzylidene pyranoses: a route to glycosylating agents. J Chem Soc Chem Commun 272–274Google Scholar
  162. 162.
    Hanessian S, Plessas NR (1969) Reaction of O-benzylidene sugars with N-bromosuccinimide. II. Scope and synthetic utility in the methyl 4,6-0-benzylidenehexopyranoside series. J Org Chem 34:1035–1044CrossRefGoogle Scholar
  163. 163.
    Van Boeckel CAA, van Boom JH (1985) Synthesis of phosphatidyl-α-glucosyl glycerol containing a dioleoyl phosphatidyl moiety. Application of the tetraisopropyldisiloxane-1,3-diyl (tips) protecting group in sugar chemistry. Part III. Tetrahedron 41:4545–4555CrossRefGoogle Scholar
  164. 164.
    Wilstermann M, Magnusson G (1997) Synthesis of XylβCer, Galβ1–4XylβCer, NeuAcα2–3Galβ1–4XylβCer and the corresponding lactone and lactam trisaccharides. J Org Chem 62:7961–7971CrossRefGoogle Scholar
  165. 165.
    Hanessian S, Roy R (1985) Chemistry of spectinomycin: its total synthesis, stereocontrolled rearrangement, and analogs. Can J Chem 63:163–172CrossRefGoogle Scholar
  166. 166.
    Andersen SM, Heuckendorff M, Jensen HH (2015) 3-(Dimethylamino)-1-propylamine: a cheap and versatile reagent for removal of byproducts in carbohydrate chemistry. Org Lett 20:944–947CrossRefGoogle Scholar
  167. 167.
    Hurst DT, McIness AG (1965) The alcoholysis of trialkylalkoxysilanes: Part II. the preparation and chemistry of methyl 2,3,4-tri-o-tri-methylsilyl-α-d-glucopyranoside. Can J Chem 43:2004–2011CrossRefGoogle Scholar
  168. 168.
    Garegg PJ (1992) Saccharides of biological importance: challenges and opportunities for organic synthesis. Acc Chem Res 25:575–580CrossRefGoogle Scholar
  169. 169.
    Johansson R, Samuelson B (1984) Regioselective reductive ring-opening of 4-methoxybenzylidene acetals of hexopyranosides. Access to a novel protecting-group strategy. J Chem Soc Perkin Trans 1: 2371–2374Google Scholar
  170. 170.
    Liu X, Seeberger PH (2004) A Suzuki–Miyaura coupling mediated deprotection as key to the synthesis of a fully lipidated malarial GPI disaccharide. Chem Commun 1708–1709Google Scholar
  171. 171.
    Zinin AI, Malysheva NN, Shpirt AM, Torgov VI, Kononov LO (2007) Use of methanesulfonic acid in the reductive ring-opening of O-benzylidene acetals. Carbohydr Res 342:627–630CrossRefGoogle Scholar
  172. 172.
    Bhaskar PM, Mathiselvam M, Loganathan D (2008) Zeolite catalyzed selective deprotection of di- and tri-O-isopropylidene sugar acetals. Carbohydr Res 343:1801–1807CrossRefGoogle Scholar
  173. 173.
    Johnsson R, Cukalevski R, Dragén F, Ivanisevic D, Johansson I, Petersson L, Wettergren EE, Yam KB, Yang B, Ellervik U (2008) Reductive openings of benzylidene acetals. Kinetic studies of borane and alane activation by Lewis acids. Carbohydr Res 343:2997–3000CrossRefGoogle Scholar
  174. 174.
    Vohra Y, Vasan M, Venot A, Boons G-J (2008) One-pot synthesis of oligosaccharides by combining reductive openings of benzylidene acetals and glycosylations. Org Lett 10:3247–3250CrossRefGoogle Scholar
  175. 175.
    Roy B, Verma P, Mukhopadhyay B (2009) H2SO4-silica-promoted ‘on-column’ removal of benzylidene, isopropylidene, trityl and tert-butyldimethylsilyl groups. Carbohydr Res 344:145–148CrossRefGoogle Scholar
  176. 176.
    Rao KV, Patil PR, Atmakuri S, Kartha KPR (2010) Iodine–sodium cyanoborohydride-mediated reductive ring opening of 4,6-O-benzylidene acetals of hexopyranosides. Carbohydr Res 345:2709–2713CrossRefGoogle Scholar
  177. 177.
    Dara S, Saikam V, Yadav M, Singh PP, Vishwakarma RA (2014) HClO4–silica-catalysed regioselective opening of benzylidene acetals and its application towards regioselective HO-4 glycosylation of benzylidene acetals in one-pot. Carbohydr Res 391:93–96CrossRefGoogle Scholar
  178. 178.
    Gu G, Fang M, Du Y (2011) Efficient and selective removal of chloroacetyl group promoted with tetra-n-butylammonium fluoride (TBAF). Carbohydr Res 346:2801–2804CrossRefGoogle Scholar
  179. 179.
    Yan S, Ding N, Zhang W, Wang P, Li Y, Li M (2012) An efficient and recyclable catalyst for the cleavage of tert-butyldiphenylsilyl ethers. Carbohydr Res 354:6–20CrossRefGoogle Scholar
  180. 180.
    Daragics K, Fügedi P (2010) (2-Nitrophenyl)acetyl: a new: selectively removable hydroxyl protecting group. Org Lett 12:2076–2079CrossRefGoogle Scholar
  181. 181.
    Bianchi A, Russo A, Bernanrdi A (2005) Neo-glycoconjugates: stereoselective synthesis of α-glycosyl amides via Staudinger ligation reactions. Tetrahedron Asymmetry 16:381–386CrossRefGoogle Scholar
  182. 182.
    Shull BK, Wu Z, Koreeda M (1996) A convenient, highly efficient one-pot preparation of peracetylated glycals from reducing sugars. J Carbohydr Chem 15:955–964CrossRefGoogle Scholar
  183. 183.
    Fürstner A, Weidmann H (1988) A simple and efficient new glycal synthesis. J Carbohydr Chem 7:773–783CrossRefGoogle Scholar
  184. 184.
    Wang W, Kong F (1998) New synthetic methodology for regio- and stereoselective synthesis of oligosaccharides via sugar ortho ester intermediates. J Org Chem 63:5744–5745CrossRefGoogle Scholar
  185. 185.
    Nicolaou KC, Winssinger N, Pastor J, De Roose F (1997) A general and highly efficient solid phase synthesis of oligosaccharides. Total synthesis of a heptasaccharide phytoalexin elicitor (HPE). J Am Chem Soc 119:449–450CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Brito-Arias
    • 1
  1. 1.Unidad Profesional Interdisciplinaria de Biotecnología Instituto Politécnico Nacional (UPIBI-IPN) Avenida Acueducto s/n Colonia La Laguna TicománCiudad de MéxicoMéxico

Personalised recommendations