Design and Analysis of Demographic Simulations

  • Jason HiltonEmail author
  • Jakub Bijak
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 41)


As the many novel contributions to this volume show, Agent-Based Models (ABMs) offer exciting possibilities for including explanatory mechanisms, such as behavioural rules governing individual behaviour, in the analysis of demographic phenomena. Knowledge about the abstract statistical individual (Courgeau 2012) derived from empirical data can in this way be augmented by rule-based explanations, giving demography much-needed theoretical foundations (Billari et al. 2003).


Gaussian Process Input Space Design Point Calibration Parameter Simulation Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC) grant EP/H021698/1 “Care Life Cycle” and the support of the EPSRC Doctoral Training Centre grant (EP/G03690X/1). We are grateful to Jonathan Forster and two anonymous reviewers for insightful comments and suggestions. Any errors remain exclusively ours.

Supplementary material (22 kb)
Appendices (ZIP 75031 kb).


  1. Andrianakis, Y., & Challenor, P. G. (2011). Parameter estimation for Gaussian process emulators. Technical report, Managing Uncertainty in Complex Models.
  2. Andrianakis, I., & Challenor, P. G. (2012). The effect of the nugget on Gaussian process emulators of computer models. Computational Statistics & Data Analysis, 56(12), 4215–4228.CrossRefGoogle Scholar
  3. Ankenman, B., Nelson, B. L., & Staum, J. (2010). Stochastic kriging for simulation metamodeling. Operations Research, 58(2), 371–382.CrossRefGoogle Scholar
  4. Aparicio Diaz, B., Fent, T., Prskawetz, A., & Bernardi, L. (2011). Transition to parenthood: The role of social interaction and endogenous networks. Demography, 48(2), 559–79.CrossRefGoogle Scholar
  5. Barton, R. R., Nelson, B. L., & Xie, W. (2014). Quantifying input uncertainty via simulation confidence intervals. INFORMS Journal on Computing, 26(1), 74–87.CrossRefGoogle Scholar
  6. Bastos, L. S., & O’Hagan, A. (2009). Diagnostics for Gaussian process emulators. Technometrics, 51(4), 425–438.CrossRefGoogle Scholar
  7. Bijak, J. (2011). Forecasting international migration in Europe: A Bayesian view. Dordrecht: Springer.CrossRefGoogle Scholar
  8. Bijak, J., Hilton, J., Silverman, E., & Cao, V. D. (2013). Reforging the wedding ring: Exploring a semi-artificial model of population for the United Kingdom with Gaussian process emulators. Demographic Research, 29(27), 729–766.CrossRefGoogle Scholar
  9. Billari, F., Ongaro, F., & Prskawetz, A. (2003). Introduction: Agent-based computational demography. In F. Billari & A. Prskawetz (Eds.), Agent-based computational demography: Using simulation to improve our understanding of demographic behaviour, (pp. 1–17). Heidelberg: Physica-Verlag.CrossRefGoogle Scholar
  10. Billari, F., Fent, T., Prskawetz, A., & Aparicio Diaz, B. (2007). The “Wedding-Ring”: An agent-based marriage model based on social interactions. Demographic Research, 17, 59–82.CrossRefGoogle Scholar
  11. Boukouvalas, A. (2010). Emulation of random output simulators. Ph.D. thesis, Aston University.
  12. Boukouvalas, A., Sykes, P., Cornford, D., & Maruri-Aguilar, H. (2014). Bayesian precalibration of a large stochastic microsimulation model. IEEE Transactions on Intelligent Transportation Systems, 15(3), 1337–1347.CrossRefGoogle Scholar
  13. Challenor, P. (2013). Experimental design for the validation of kriging metamodels in computer experiments. Journal of Simulation, 7(4), 290–296.CrossRefGoogle Scholar
  14. Courgeau, D. (2012). Probability and social science: Methodological relationships between the two approaches. Dordrecht: Springer.CrossRefGoogle Scholar
  15. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Washington, DC/Cambridge: Brookings Institution Press/MIT Press.Google Scholar
  16. Fent, T., Aparicio Diaz, B, & Prskawetz, A. (2013). Family policies in the context of low fertility and social structure. Demographic Research, 29, 963–998.CrossRefGoogle Scholar
  17. Forrester, A., Sobester, A., & Keane, A. (2008). Engineering design via surrogate modelling: A practical guide. Chichester: Wiley.CrossRefGoogle Scholar
  18. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Abingdon: CRC.Google Scholar
  19. Gramacy, R. B. (2005). Bayesian treed Gaussian process models. Ph.D. thesis, University of California, Santa Cruz.Google Scholar
  20. Grazzini, J., & Richiardi, M. G. (2013). Consistent estimation of agent-based models by simulated minimum distance. Technical report 130, Laboratorioa Riccardo Revelli.Google Scholar
  21. Grimm, V., & Railsback, S. F. (2005). Individual-based modelling and ecology. Princeton: Princeton Univeristy Press.Google Scholar
  22. Hankin, R. (2005). Introducing BACCO, an R bundle for Bayesian analysis of computer code output. Journal of Statistical Software, 14(16).Google Scholar
  23. Haylock, R. (1997). Bayesian inference about outputs of computationally expensive algorithms with uncertainty on the inputs. Ph.D. thesis, University of Nottingham.
  24. Kennedy, M. (2004). Descriptions of the Gaussian process model used in gem-sa. Google Scholar
  25. Kennedy, M., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society, 63(3), 425–464.CrossRefGoogle Scholar
  26. Kersting, K., Plagemann, C., Pfaff, P., & Burgard, W. (2007). Most likely heteroscedastic Gaussian process regression. In Proceedings of the 24th International Conference on Machine Learning, ICML ’07 (pp. 393–400). Corvallis/New York: ACM. doi:  10.1145/1273496.1273546. ISBN 978-1-59593-793-3.
  27. Klabunde, A. (2014). Computational economic modeling of migration. Technical Report 471, Ruhr University Bochum, Bochum.Google Scholar
  28. Kleijnen, J. P. (2008). Design and analysis of simulation experiments. New York: Springer.Google Scholar
  29. Kleijnen, J. P. C., & Mehdad, E. (2014). Multivariate versus univariate kriging metamodels for multi-response simulation models. European Journal of Operational Research, 236(2), 573–582.CrossRefGoogle Scholar
  30. Law, A. M. (2007). Simulation modeling and analysis (4th ed.). New York: McGraw-Hill.Google Scholar
  31. Loeppky, J. L., Sacks, J., & Welch, W. J. (2009). Choosing the sample size of a computer experiment: A practical guide. Technometrics, 51(4), 366–376.CrossRefGoogle Scholar
  32. Luke, S. (2007). Finding interesting things: Population-based adaptive parameter sweeping. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (pp. 86–93), London.Google Scholar
  33. Mitchell, M. (2009). Complexity: A guided tour. Oxford: Oxford University Press.Google Scholar
  34. Montgomery, D. (2013). Design and analysis of experiments (8th ed.). Hoboken: Wiley.Google Scholar
  35. MUCM (2011). Managing uncertainty in complex models toolkit. Google Scholar
  36. Nelder, J., & McCullagh, P. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135(3), 370–384.CrossRefGoogle Scholar
  37. Oakley, J. (1999). Bayesian uncertainty analysis for complex computer codes. Ph.D. thesis, University of Sheffield.Google Scholar
  38. Oakley, J. (2002). Eliciting Gaussian process priors for complex computer codes. Journal of the Royal Statistical Society: Series D (The Statistician), 51(1), 81–97.Google Scholar
  39. Oakley, J., & O’Hagan, A. (2002). Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika, 89(4), 769–784.CrossRefGoogle Scholar
  40. Oakley, J., & O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: A Bayesian approach. Journal of the Royal Statistical Society: Series B, 66(3), 751–769.CrossRefGoogle Scholar
  41. O’Hagan, A. (2006). Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering and System Safety, 91(10–11), 1290–1300.CrossRefGoogle Scholar
  42. O’Hagan, A., & Oakley, J. E. (2004). Probability is perfect, but we can’t elicit it perfectly. Reliability Engineering and System Safety, 85(1–3), 239–248.CrossRefGoogle Scholar
  43. Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263, 641–646.CrossRefGoogle Scholar
  44. Poole, D., & Raftery, A. E. (2000). Inference for deterministic simulation models: The Bayesian melding approach. Journal of the American Statistical Association, 95(452), 1244.CrossRefGoogle Scholar
  45. Qian, P. Z. G., & Wu, C. F. J. (2008). Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics, 50(2), 192–204.CrossRefGoogle Scholar
  46. R Development Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Google Scholar
  47. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT. Google Scholar
  48. Rossiter, S., Noble, J., & Bell, K. (2010). Social simulations: Improving interdisciplinary understanding of scientific positioning and validity. Journal of Artificial Societies and Social Simulation, 13(1), 10.CrossRefGoogle Scholar
  49. Roustant, O., Ginsbourger, D., & Deville, Y. (2012). DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodelling and optimisation. Journal of Statistical Software 51(1).Google Scholar
  50. Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice. Chichester: Wiley.Google Scholar
  51. Saltelli, A., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global sensitivity analysis. The primer. Chichester: Wiley.Google Scholar
  52. Santner, T. J., Williams, B. J., & Notz, W. I. (2003). The design and analysis of computer experiments. New York: Springer.CrossRefGoogle Scholar
  53. Ševčíková, H., Raftery, A. E., & Waddell, P. A. (2007). Assessing uncertainty in urban simulations using Bayesian melding. Transportation Research Part B: Methodological, 41(6), 652–669.CrossRefGoogle Scholar
  54. Silverman, E., Bijak, J., & Noble, J. (2011). Feeding the beast: Can computational demographic models free us from the tyranny of data? In Advances in Artificial Life, ECAL 2011: Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems, Paris (pp. 747–757). MIT Press.
  55. Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280.CrossRefGoogle Scholar
  56. Squazzoni, F. (2012). Agent-based computational sociology (1st ed.). Hoboken: Wiley.CrossRefGoogle Scholar
  57. Urban, N. M., & Fricker, T. E. (2010). A comparison of Latin hypercube and grid ensemble designs for the multivariate emulation of an earth system model. Computers & Geosciences, 36(6), 746–755.CrossRefGoogle Scholar
  58. Vernon, I., Goldsteiny, & M., Bowerz, R. G. (2010). Galaxy formation: A Bayesian uncertainty analysis. Bayesian Analysis, 5(4), 619–670.Google Scholar
  59. Werker, C., & Brenner, T. (2004). Empirical calibration of simulation models. Technical report, Max Planck Institute of Economics. Google Scholar
  60. Xie, W., Nelson, B. L., Barton, R. R., Nelson, B. L., & Barton, R. R. (2014). A Bayesian framework for quantifying uncertainty in stochastic simulation. Operations Research, 62(6), 1439–1452.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.University of SouthamptonSouthamptonUK
  2. 2.Department of Social Statistics and DemographyUniversity of SouthamptonSouthamptonUK

Personalised recommendations