Advertisement

The Role of Functional Networks in Neuropsychiatric Disorders

  • Leonides Canuet
  • Yasunori Aoki
  • Ryouhei Ishii
  • Fernando MaestúEmail author
Chapter
  • 564 Downloads

Abstract

The impact of neurological and psychiatric diseases on the functional organization of the brain has been a topic of growing interest in the last decade. There is increasing evidence indicating that the characterization of brain activity purely in terms of anatomically segregated responses is not sufficient to explain the complexity of neuropsychiatric disorders such as Alzheimer’s disease, epilepsy, schizophrenia, or autism. Thus, recent studies are looking at brain functional connectivity using neuroimaging and neurophysiological techniques. It is known that a lesion in a brain region considered a hub or key node may cause the loss of a particular brain function supported by a particular brain network, in which that hub plays a crucial role for an efficient communication. This brain integration approach may improve our understanding of symptoms and pathophysiology of neurological and psychiatric diseases, which are currently considered as disconnection syndromes. In addition, this may help clarify answered questions such as how local lesions (e.g., tumors) or focal epilepsy can affect the organization of functional networks or how some diseases are using neural networks to spread their functional and histopathological abnormalities?

In the case of Alzheimer’s disease, the accumulation of amyloid protein and tau protein-related neuronal injury are associated with the cortical dysfunction as well as neuropathology spreads by neuronal to neuronal connections using well-established neuronal circuits. With regard to epilepsy, this disease is proposed to be due to a dysfunction within an epileptic network rather than to pathological activity of single cortical sources. Thus, epileptic networks underlying focal epilepsies and specific epileptic syndromes may be of great importance for localizing the seizure onset or the epileptogenic zone, for predicting postsurgical cognitive impairment, and even for epilepsy diagnosis in some cases where repetitive EEG recordings have failed to identify epileptiform activity. In neuropsychiatric disorders that do not have structural lesions, disruption of certain networks, including the central executive network, salience network, and default mode network, is proposed to be related to psychotic symptoms or cognitive deficits. In this chapter, we will focus on oscillation-based functional connectivity in two main neurological disorders: Alzheimer’s Disease and epilepsy, and in some of the most important psychiatric conditions: schizophrenia, autism, and Major Depressive Disorder. We aim to provide recent evidence of how this new network approach can shed some light on the pathophysiological mechanisms underlying neuropsychiatric disorders.

Keywords

Autism Spectrum Disorder Major Depressive Disorder Mild Cognitive Impairment Functional Connectivity Default Mode Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alonso-Solís A, Vives-Gilabert Y, Grasa E, Portella MJ, Rabella M, Sauras RB, Roldán A, Núñez-Marín F, Gómez-Ansón B, Pérez V, Alvarez E, Corripio I (2015) Resting-state functional connectivity alterations in the default network of schizophrenia patients with persistent auditory verbal hallucinations. Schizophr Res 161(2–3):261–268CrossRefPubMedGoogle Scholar
  2. Andreou C, Leicht G, Nolte G, Polomac N, Moritz S, Karow A, Hanganu-Opatz IL, Engel AK, Mulert C (2015) Resting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state. Schizophr Res 161(2–3):299–307CrossRefPubMedGoogle Scholar
  3. Aoki Y, Ishii R, Pascual-Marqui RD, Canuet L, Ikeda S, Hata M, Imajo K, Matsuzaki H, Musha T, Asada T, Iwase M, Takeda M (2015) Detection of EEG-resting state independent networks by eLORETA-ICA method. Front Hum Neurosci 9:31CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bajo R, Maestú F, Nevado A, Sancho M, Gutiérrez R, Campo P, Castellanos NP, Gil P, Moratti S, Pereda E, Del-Pozo F (2010) Functional connectivity in mild cognitive impairment during a memory task: implications for the disconnection hypothesis. J Alzheimers Dis 22(1):183–193PubMedGoogle Scholar
  5. Bajo R, Castellanos NP, López ME, Ruiz JM, Montejo P, Montenegro M, Llanero M, Gil P, Yubero R, Baykova E, Paul N, Aurtenetxe S, Del Pozo F, Maestu F (2012a) Early dysfunction of functional connectivity in healthy elderly with subjective memory complaints. Age (Dordr) 34(2):497–506CrossRefGoogle Scholar
  6. Bajo R, Castellanos NP, Cuesta P, Aurtenetxe S, Garcia-Prieto J, Gil-Gregorio P, del-Pozo F, Maestu F (2012b) Differential patterns of connectivity in progressive mild cognitive impairment. Brain Connect 2(1):21–24CrossRefPubMedGoogle Scholar
  7. Bajo R, Pusil S, López ME, Canuet L, Pereda E, Osipova D, Maestú F, Pekkonen E (2015) Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer's disease. Sci Rep 1(5):9748CrossRefGoogle Scholar
  8. Bamiou DE, Sisodiya S, Musiek FE, Luxon LM (2007) The role of the interhemispheric pathway in hearing. Brain Res Rev 56(1):170–182, ReviewCrossRefPubMedGoogle Scholar
  9. Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M (2011) A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia 49(2):254–263CrossRefPubMedGoogle Scholar
  10. Berendse HW, Verbunt JP, Scheltens P, van Dijk BW, Jonkman EJ (2000) Magnetoencephalographic analysis of cortical activity in Alzheimer’s disease: a pilot study. Clin Neurophysiol 111(4):604–612CrossRefPubMedGoogle Scholar
  11. Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J (2011) Depression, rumination and the default network. Soc Cogn Affect Neurosci 6(5):548–555CrossRefPubMedGoogle Scholar
  12. Bhattacharya J (2001) Reduced degree of long-range phase synchrony in pathological human brain. Acta Neurobiol Exp (Wars) 61(4):309–318Google Scholar
  13. Buldú JM, Bajo R, Maestú F, Castellanos N, Leyva I, Gil P, Sendiña-Nadal I, Almendral JA, Nevado A, del-Pozo F, Boccaletti S (2011) Reorganization of functional networks in mild cognitive impairment. PLoS One 6(5), e19584CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burgess AP, Gruzelier JH (1997) Localization of word and face recognition memory using topographical EEG. Psychophysiology 34(1):7–16CrossRefPubMedGoogle Scholar
  15. Burroughs SA, Morse RP, Mott SH, Holmes GL (2014) Brain connectivity in West syndrome. Seizure 23(7):576–579CrossRefPubMedPubMedCentralGoogle Scholar
  16. Campo P, Garrido MI, Moran RJ, García-Morales I, Poch C, Toledano R, Gil-Nagel A, Dolan RJ, Friston KJ (2013) Network reconfiguration and working memory impairment in mesial temporal lobe epilepsy. Neuroimage 72:48–54CrossRefPubMedPubMedCentralGoogle Scholar
  17. Canuet L, Ishii R, Pascual-Marqui RD, Iwase M, Kurimoto R, Aoki Y, Ikeda S, Takahashi H, Nakahachi T, Takeda M (2011) Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLoS One 6(11), e27863CrossRefPubMedPubMedCentralGoogle Scholar
  18. Canuet L, Pusil S, López ME, Bajo R, Pineda-Pardo J, Cuesta P, Galvez G, Gaztelu JM, Lourido D, García-Ribas G, Maestú F (2015) Network disruption and cerebrospinal fluid amyloid-beta and phospho-tau levels in mild cognitive impairment. J Neurosci 35(28):10325–10330CrossRefPubMedGoogle Scholar
  19. Castellanos N, Paul N, Ordoñez V, Demuynck O, Bajo R, Campo P, Bilbao A, Ortiz T, Pozo F, Maestú F (2010) Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain 133:2365–2381CrossRefPubMedGoogle Scholar
  20. Clemens B, Puskás S, Besenyei M, Spisák T, Opposits G, Hollódy K, Fogarasi A, Fekete I, Emri M (2013) Neurophysiology of juvenile myoclonic epilepsy: EEG-based network and graph analysis of the interictal and immediate preictal states. Epilepsy Res 106(3):357–369CrossRefPubMedGoogle Scholar
  21. Constable RT, Scheinost D, Finn ES, Shen X, Hampson M, Winstanley FS, Spencer DD, Papademetris X (2013) Potential use and challenges of functional connectivity mapping in intractable epilepsy. Front Neurol 4:39CrossRefPubMedPubMedCentralGoogle Scholar
  22. Crossley N, Mechelli A, Scott J, Carletti F, Fox P, McGuire P, Bullmore ET (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 1:1–14Google Scholar
  23. Cuesta P, Garcés P, Castellanos NP, López ME, Aurtenetxe S, Bajo R, Pineda-Pardo JA, Bruña R, Marín AG, Delgado M, Barabash A, Ancín I, Cabranes JA, Fernandez A, Del Pozo F, Sancho M, Marcos A, Nakamura A, Maestú F (2015) Influence of the APOE ε4 allele and mild cognitive impairment diagnosis in the disruption of the MEG resting state functional connectivity in sources space. J Alzheimers Dis 44(2):493–505PubMedGoogle Scholar
  24. Dai Y, Zhang W, Dickens DL, He B (2012) Source connectivity analysis from MEG and its application to epilepsy source localization. Brain Topogr 25(2):157–166CrossRefPubMedGoogle Scholar
  25. De Haan W, van der Flier WM, Koene T, Smits LL, Scheltens P, Stam CJ (2012a) Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease. Neuroimage 59(4):3085–3093CrossRefPubMedGoogle Scholar
  26. De Haan W, van der Flier WM, Wang H, Van Mieghem PF, Scheltens P, Stam CJ (2012b) Disruption of functional brain networks in Alzheimer’s disease: what can we learn from graph spectral analysis of resting-state magnetoencephalography? Brain Connect 2(2):45–55CrossRefPubMedGoogle Scholar
  27. De Haan W, Mott K, van Straaten EC, Scheltens P, Stam CJ (2012c) Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput Biol 8(8), e1002582. doi: 10.1371/journal.pcbi.1002582 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Delbeuck X, Van der Linden M, Collette F (2003) Alzheimer’s disease as a disconnection syndrome? Neuropsychol Rev 13:79–92CrossRefPubMedGoogle Scholar
  29. Di Martino A, Ross K, Uddin LQ, Sklar AB, Castellanos FX, Milham MP (2009) Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis. Biol Psychiatry 65(1):63–74CrossRefPubMedGoogle Scholar
  30. Doesburg SM, Vidal J, Taylor MJ (2013) Reduced theta connectivity during set-shifting in children with autism. Front Hum Neurosci 7:785PubMedPubMedCentralGoogle Scholar
  31. Douw L, de Groot M, van Dellen E, Heimans JJ, Ronner HE, Stam CJ, Reijneveld JC (2010) Functional connectivity is a sensitive predictor of epilepsy diagnosis after the first seizure. PLoS One 5(5), e10839CrossRefPubMedPubMedCentralGoogle Scholar
  32. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1–2):93–118CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fisher RS, van Emde BW, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472CrossRefPubMedGoogle Scholar
  34. Franciotti R, Iacono D, Della Penna S, Pizzella V, Torquati K, Onofrj M, Romani GL (2006) Cortical rhythms reactivity in AD, LBD and normal subjects: a quantitative MEG study. Neurobiol Aging 27(8):1100–1109CrossRefPubMedGoogle Scholar
  35. Garcés P, Angel Pineda-Pardo J, Canuet L, Aurtenetxe S, López ME, Marcos A, Yus M, Llanero-Luque M, Del-Pozo F, Sancho M, Maestú F (2014) The default mode network is functionally and structurally disrupted in amnestic mild cognitive impairment—a bimodal MEG-DTI study. Neuroimage Clin 6:214–221CrossRefPubMedPubMedCentralGoogle Scholar
  36. Geschwind N (1965) Disconnexion syndromes in animals and man: I. Brain 88(2):237–294CrossRefPubMedGoogle Scholar
  37. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4(4), e5226CrossRefPubMedPubMedCentralGoogle Scholar
  38. Higashima M, Takeda T, Kikuchi M, Nagasawa T, Hirao N, Oka T, Nakamura M, Koshino Y (2007) State-dependent changes in intrahemispheric EEG coherence for patients with acute exacerbation of schizophrenia. Psychiatry Res 149(1–3):41–47CrossRefPubMedGoogle Scholar
  39. Honaga E, Ishii R, Kurimoto R, Canuet L, Ikezawa K, Takahashi H, Nakahachi T, Iwase M, Mizuta I, Yoshimine T, Takeda M (2010) Post-movement beta rebound abnormality as indicator of mirror neuron system dysfunction in autistic spectrum disorder: an MEG study. Neurosci Lett 478(3):141–145CrossRefPubMedGoogle Scholar
  40. Hsiao FJ, Yu HY, Chen WT, Kwan SY, Chen C, Yen DJ, Yiu CH, Shih YH, Lin YY (2015) Increased intrinsic connectivity of the default mode network in temporal lobe epilepsy: evidence from resting-state MEG recordings. PLoS One 10(6), e0128787CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jeong W, Jin SH, Kim M, Kim JS, Chung CK (2014) Abnormal functional brain network in epilepsy patients with focal cortical dysplasia. Epilepsy Res 108(9):1618–1626CrossRefPubMedGoogle Scholar
  42. Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, Dubois B, Dufouil C, Ellis KA, van der Flier WM, Glodzik L, van Harten AC, de Leon MJ, McHugh P, Mielke MM, Molinuevo JL, Mosconi L, Osorio RS, Perrotin A, Petersen RC, Rabin LA, Rami L, Reisberg B, Rentz DM, Sachdev PS, de la Sayette V, Saykin AJ, Scheltens P, Shulman MB, Slavin MJ, Sperling RA, Stewart R, Uspenskaya O, Vellas B, Visser PJ, Wagner M, Subjective Cognitive Decline Initiative (SCD-I) Working Group (2014) A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 10(6):844–852CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kennedy DP, Courchesne E (2008a) Functional abnormalities of the default network during self- and other-reflection in autism. Soc Cogn Affect Neurosci 3(2):177–190CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kennedy DP, Courchesne E (2008b) The intrinsic functional organization of the brain is altered in autism. Neuroimage 39(4):1877–1885CrossRefPubMedGoogle Scholar
  45. Kennedy DP, Redcay E, Courchesne E (2006) Failing to deactivate: resting functional abnormalities in autism. Proc Natl Acad Sci USA 103(21):8275–8280CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kikuchi M, Yoshimura Y, Hiraishi H, Munesue T, Hashimoto T, Tsubokawa T, Takahashi T, Suzuki M, Higashida H, Minabe Y (2015) Reduced long-range functional connectivity in young children with autism spectrum disorder. Soc Cogn Affect Neurosci 10(2):248–254CrossRefPubMedGoogle Scholar
  47. Kim H (2012) A dual-subsystem model of the brain’s default network: self-referential processing, memory retrieval processes, and autobiographical memory retrieval. Neuroimage 61(4):966–977. doi: 10.1016/j.neuroimage.2012.03.025 CrossRefPubMedGoogle Scholar
  48. Koechlin E, Summerfield C (2007) An information theoretical approach to prefrontal executive function. Trends Cogn Sci 11(6):229–235CrossRefPubMedGoogle Scholar
  49. Krishnan B, Vlachos I, Wang ZI, Mosher J, Najm I, Burgess R, Iasemidis L, Alexopoulos AV (2015) Epileptic focus localization based on resting state interictal MEG recordings is feasible irrespective of the presence or absence of spikes. Clin Neurophysiol 126(4):667–674CrossRefPubMedGoogle Scholar
  50. Lemieux L, Daunizeau J, Walker MC (2011) Concepts of connectivity and human epileptic activity. Front Syst Neurosci 5:12CrossRefPubMedPubMedCentralGoogle Scholar
  51. Li CT, Chen LF, Tu PC, Wang SJ, Chen MH, Su TP, Hsieh JC (2013) Impaired prefronto-thalamic functional connectivity as a key feature of treatment-resistant depression: a combined MEG, PET and rTMS study. PLoS One 8(8), e70089CrossRefPubMedPubMedCentralGoogle Scholar
  52. Li Q, Cao W, Liao X, Chen Z, Yang T, Gong Q, Zhou D, Luo C, Yao D (2015) Altered resting state functional network connectivity in children absence epilepsy. J Neurol Sci 354(1–2):79–85CrossRefPubMedGoogle Scholar
  53. López ME, Bruña R, Aurtenetxe S, Pineda-Pardo JÁ, Marcos A, Arrazola J, Reinoso AI, Montejo P, Bajo R, Maestú F (2014) Alpha-band hypersynchronization in progressive mild cognitive impairment: a magnetoencephalography study. J Neurosci 34(44):14551–14559CrossRefPubMedGoogle Scholar
  54. Lu Q, Bi K, Liu C, Luo G, Tang H, Yao Z (2013) Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings. Brain Res 1535:52–60CrossRefPubMedGoogle Scholar
  55. Maestú F, Yubero R, Moratti S, Campo P, Gil-Gregorio P, Paul N, Solesio E, del Pozo F, Nevado A (2011) Brain activity patterns in stable and progressive mild cognitive impairment during working memory as evidenced by magnetoencephalography. J Clin Neurophysiol 28(2):202–209CrossRefPubMedGoogle Scholar
  56. Maestú F, Peña JM, Garcés P, González S, Bajo R, Bagic A, Cuesta P, Funke M, Mäkelä JP, Menasalvas E, Nakamura A, Parkkonen L, López ME, Del Pozo F, Sudre G, Zamrini E, Pekkonen E, Henson RN, Becker JT, Magnetoencephalography International Consortium of Alzheimer’s Disease (2015) A multicenter study of the early detection of synaptic dysfunction in Mild Cognitive Impairment using Magnetoencephalography-derived functional connectivity. Neurol Clin 1(9):103–109CrossRefGoogle Scholar
  57. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506, ReviewCrossRefPubMedGoogle Scholar
  58. Morrison JH, Scherr S, Lewis DA, Campbell MJ, Bloom FE, Rogers J, Benoit R (1986) The laminar and regional distribution of neocortical somatostatin and neuritic plaques: implications for Alzheimer’s disease as a global neocortical disconnection syndrome. The Biological Substrates of Alzheimer’s Disease. Academic, Orlando, pp 115–131Google Scholar
  59. Mulert C, Kirsch V, Pascual-Marqui R, McCarley RW, Spencer KM (2011) Long-range synchrony of γ oscillations and auditory hallucination symptoms in schizophrenia. Int J Psychophysiol 79(1):55–63CrossRefPubMedGoogle Scholar
  60. Myers N, Pasquini L, Göttler J, Grimmer T, Koch K et al (2014) Within-patient correspondence of amyloid-β and intrinsic network connectivity in Alzheimer’s Disease. Brain 1:1–13Google Scholar
  61. Nath S, Agholme L, Kurudenkandy FR, Granseth B, Marcusson J (2012) Spreading of neurodegenrative pathology via neuron-to-neuron transmission of β–amyloid. J Neurosci 32(26):8767–8777CrossRefPubMedGoogle Scholar
  62. Niso G, Carrasco S, Gudín M, Maestú F, Del-Pozo F, Pereda E (2015) What graph theory actually tells us about resting state interictal MEG epileptic activity. Neurol Clin 8:503–515CrossRefGoogle Scholar
  63. O’Muircheartaigh J, Vollmar C, Barker GJ, Kumari V, Symms MR, Thompson P, Duncan JS, Koepp MJ, Richardson MP (2012) Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy. Brain 135(12):3635–3644CrossRefPubMedPubMedCentralGoogle Scholar
  64. Osipova D, Ahveninen J, Kaakkola S, Jääskeläinen IP, Huttunen J, Pekkonen E (2003) Effects of scopolamine on MEG spectral power and coherence in elderly subjects. Clin Neurophysiol 114(10):1902–1907CrossRefPubMedGoogle Scholar
  65. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, Tanaka H, Hirata K, John ER, Prichep L, Biscay-Lirio R, Kinoshita T (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans A Math Phys Eng Sci 369(1952):3768–3784CrossRefPubMedGoogle Scholar
  66. Pineda-Pardo JA, Bruña R, Woolrich M, Marcos A, Nobre AC, Maestú F, Vidaurre D (2014a) Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. Neuroimage 101:765–777CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pineda-Pardo JA, Garcés P, López ME, Aurtenetxe S, Cuesta P, Marcos A, Montejo P, Yus M, Hernández-Tamames JA, Del-Pozo F, Becker JT, Maestu F (2014b) White matter damage disorganizes brain functional networks in amnestic mild cognitive impairment. Brain Connect 4(5):312–322CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pittau F, Vulliemoz S (2015) Functional brain networks in epilepsy: recent advances in noninvasive mapping. Curr Opin Neurol 28(4):338–343CrossRefPubMedGoogle Scholar
  69. Raichle ME (2011) The restless brain. Brain Connect 1(1):3–12CrossRefPubMedPubMedCentralGoogle Scholar
  70. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rotarska-Jagiela A, van de Ven V, Oertel-Knöchel V, Uhlhaas PJ, Vogeley K, Linden DE (2010) Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 117(1):21–30CrossRefPubMedGoogle Scholar
  72. Sargolzaei S, Cabrerizo M, Goryawala M, Eddin AS, Adjouadi M (2015) Scalp EEG brain functional connectivity networks in pediatric epilepsy. Comput Biol Med 56:158–166CrossRefPubMedGoogle Scholar
  73. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sestieri C, Corbetta M, Romani GL, Shulman GL (2011) Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J Neurosci 31(12):4407–4420CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sommer IE, Clos M, Meijering AL, Diederen KM, Eickhoff SB (2012) Resting state functional connectivity in patients with chronic hallucinations. PLoS One 7(9), e43516CrossRefPubMedPubMedCentralGoogle Scholar
  76. Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21(3):489–510. doi: 10.1162/jocn.2008.21029 CrossRefPubMedGoogle Scholar
  77. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105(34):12569–12574CrossRefPubMedPubMedCentralGoogle Scholar
  78. Stam CJ, van Cappellen van Walsum AM, Pijnenburg YA, Berendse HW, de Munck JC, Scheltens P et al (2002) Generalized synchronization of MEG recordings in Alzheimer’s Disease: evidence for involvement of the gamma band. J Clin Neurophysiol 19(6):562–574CrossRefPubMedGoogle Scholar
  79. Stam CJ, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2006) Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. Neuroimage 32(3):1335–1344CrossRefPubMedGoogle Scholar
  80. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(Pt 1):213–224PubMedGoogle Scholar
  81. Stefan H, Lopes da Silva FH (2013) Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol 4:8CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tsiaras V, Simos PG, Rezaie R, Sheth BR, Garyfallidis E, Castillo EM, Papanicolaou AC (2011) Extracting biomarkers of autism from MEG resting-state functional connectivity networks. Comput Biol Med 41(12):1166–1177CrossRefPubMedGoogle Scholar
  83. Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30(2):625–637CrossRefPubMedGoogle Scholar
  84. Uhlhaas PJ, Linden DE, Singer W, Haenschel C, Lindner M, Maurer K, Rodriguez E (2006) Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J Neurosci 26(31):8168–8175CrossRefPubMedGoogle Scholar
  85. van Lutterveld R, Hillebrand A, Diederen KM, Daalman K, Kahn RS, Stam CJ, Sommer IE (2012) Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia. PLoS One 7(7), e41149CrossRefPubMedPubMedCentralGoogle Scholar
  86. Varotto G, Tassi L, Franceschetti S, Spreafico R, Panzica F (2012) Epileptogenic networks of type II focal cortical dysplasia: a stereo-EEG study. Neuroimage 61(3):591–598CrossRefPubMedGoogle Scholar
  87. Wei HL, An J, Zeng LL, Shen H, Qiu SJ, Hu DW (2015) Altered functional connectivity among default, attention, and control networks in idiopathic generalized epilepsy. Epilepsy Behav 46:118–125CrossRefPubMedGoogle Scholar
  88. Wotruba D, Michels L, Buechler R, Metzler S, Theodoridou A, Gerstenberg M, Walitza S, Kollias S, Rössler W, Heekeren K (2014) Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis. Schizophr Bull 40(5):1095–1104CrossRefPubMedGoogle Scholar
  89. Wu T, Ge S, Zhang R, Liu H, Chen Q, Zhao R, Yin Y, Lv X, Jiang T (2014) Neuromagnetic coherence of epileptic activity: an MEG study. Seizure 23(6):417–423CrossRefPubMedGoogle Scholar
  90. Xiao F, Lei D, An D, Li L, Chen S, Chen F, Yang T, Ren J, Huang X, Gong Q, Zhou D (2015a) Functional brain connectome and sensorimotor networks in rolandic epilepsy. Epilepsy Res 113:113–125CrossRefPubMedGoogle Scholar
  91. Xiao F, Li L, An D, Lei D, Tang Y, Yang T, Ren J, Chen S, Huang X, Gong Q, Zhou D (2015b) Altered attention networks in benign childhood epilepsy with centrotemporal spikes (BECTS): a resting-state fMRI study. Epilepsy Behav 45:234–241CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Leonides Canuet
    • 1
  • Yasunori Aoki
    • 2
  • Ryouhei Ishii
    • 2
  • Fernando Maestú
    • 1
    • 3
    Email author
  1. 1.Laboratory of Cognitive and Computational Neuroscience (UCM-UPM)Centre for Biomedical TechnologyMadridSpain
  2. 2.Department of PsychiatryOsaka University Graduate School of MedicineOsakaJapan
  3. 3.Department of Basic Psychology IIComplutense University of MadridMadridSpain

Personalised recommendations