Advertisement

Development of Human Neurophysiological Activity and Network Dynamics

  • Vasily A. Vakorin
  • Sam M. DoesburgEmail author
Chapter

Abstract

Neural oscillations and their coordination among brain areas have been related to the brain’s ability to dynamically modulate communication in distributed networks. Such integration of transient distributed cell assemblies is thought to support the dynamic repertoire of cognition, perception, and behavior. Such neurophysiological connectivity has been linked to phenomena such as metastability and complexity in brain signals. To better understand the maturation of functional neurophysiological activity and network communication dynamics, this chapter reviews the development of classical properties of EEG and MEG rhythms such as spectral power and phase synchronization, as well as measures of functional connectivity based on nonlinear dynamics including information-theoretic measures of functional connectivity, metastability, and signal complexity.

Keywords

Functional Connectivity Signal Complexity Spectral Power Alpha Rhythm Brain Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Benasich AA, Gou Z, Choudhury N, Harris KD (2008) Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav Brain Res 195(2):215–222CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boersma M, Smit DJ, de Bie H, Van Baal GC, Boomsma DI, de Geus EJ, Delemarre‐van de Waal HA, Stam CJ (2011) Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Mapp 32(3):413–425CrossRefPubMedGoogle Scholar
  3. Boersma M, Smit DJ, Boomsma DI, Geus EJ, Delemarre-van de Waal HA, Stam C (2013) Growing trees in child brains: graph theoretical analysis of EEG derived minimum spanning tree in 5 and 7 year old children reflects brain maturation. Brain Connect 3:50–60CrossRefPubMedGoogle Scholar
  4. Bruce EN, Bruce MC, Vennelaganti S (2009) Sample entropy tracks changes in EEG power spectrum with sleep state and aging. J Clin Neurophysiol 26(4):257CrossRefPubMedPubMedCentralGoogle Scholar
  5. Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14(11):506–515CrossRefPubMedPubMedCentralGoogle Scholar
  6. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89(6):068102CrossRefPubMedGoogle Scholar
  7. Cragg L, Kovacevic N, McIntosh AR, Poulsen C, Martinu K, Leonard G, Paus T (2011) Maturation of EEG power spectra in early adolescence: a longitudinal study. Dev Sci 14(5):935–943CrossRefPubMedGoogle Scholar
  8. Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci 106(25):10302–10307CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dikanev T, Smirnov D, Wennberg R, Velazquez JP, Bezruchko B (2005) EEG nonstationarity during intracranially recorded seizures: statistical and dynamical analysis. Clin Neurophysiol 116(8):1796–1807CrossRefPubMedGoogle Scholar
  10. Doesburg SM, Ribary U, Herdman AT, Moiseev A, Cheung T, Miller SP, Poskitt KJ, Weinberg H, Whitfield MF, Synnes A, Grunau RE (2010) Magnetoencephalography reveals slowing of resting peak oscillatory frequency in children born very preterm. Pediatr Res 70(2):171–175CrossRefGoogle Scholar
  11. Doesburg SM, Ribary U, Herdman AT, Miller SP, Poskitt KJ, Moiseev A, Whitfield MF, Synnes A, Grunau RE (2011) Altered long-range alpha-band synchronization during visual short-term memory retention in children born very preterm. Neuroimage 54(3):2330–2339CrossRefPubMedGoogle Scholar
  12. Doesburg SM, Moiseev A, Herdman AT, Ribary U, Grunau RE (2013) Region-specific slowing of alpha oscillations is associated with visual-perceptual abilities in children born very preterm. Front Hum Neurosci 7:791PubMedPubMedCentralGoogle Scholar
  13. Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15(5):191–199CrossRefPubMedGoogle Scholar
  14. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361CrossRefPubMedPubMedCentralGoogle Scholar
  15. Engel AK, Gerloff C, Hilgetag CC, Nolte G (2013) Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80(4):867–886CrossRefPubMedGoogle Scholar
  16. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5), e1000381CrossRefPubMedPubMedCentralGoogle Scholar
  17. Freyer F, Roberts JA, Becker R, Robinson PA, Ritter P, Breakspear M (2011) Biophysical mechanisms of multistability in resting-state cortical rhythms. J Neurosci 31(17):6353–6361CrossRefPubMedGoogle Scholar
  18. Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88(1):220–235CrossRefPubMedGoogle Scholar
  19. Gasser T, Verleger R, Bächer P, Sroka L (1988) Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalogr Clin Neurophysiol 69(2):91–99CrossRefPubMedGoogle Scholar
  20. Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK (2008) Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cogn Neurodyn 2(2):115–120CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gómez C, Pérez-Macías JM, Poza J, Fernández A, Hornero R (2013) Spectral changes in spontaneous MEG activity across the lifespan. J Neural Eng 10(6):066006CrossRefPubMedGoogle Scholar
  22. Gou Z, Choudhury N, Benasich AA (2011) Resting frontal gamma power at 16, 24 and 36 months predicts individual differences in language and cognition at 4 and 5 years. Behav Brain Res 220(2):263–270CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haken H (2013) Principles of brain functioning: a synergetic approach to brain activity, behavior and cognition, vol 67. Springer, BerlinGoogle Scholar
  24. Janjarasjitt S, Scher MS, Loparo KA (2008) Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between neurodevelopment and complexity. Clin Neurophysiol 119(4):822–836CrossRefPubMedGoogle Scholar
  25. Kaffashi F, Foglyano R, Wilson CG, Loparo KA (2008) The effect of time delay on Approximate & Sample Entropy calculations. Physica D Nonlinear Phenom 237(23):3069–3074CrossRefGoogle Scholar
  26. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H et al (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16(1):41–48CrossRefPubMedGoogle Scholar
  27. Kohlmorgen J, Müller KR, Rittweger J, Pawelzik K (2000) Identification of nonstationary dynamics in physiological recordings. Biol Cybern 83(1):73–84CrossRefPubMedGoogle Scholar
  28. Kolmogorov AN (1959) Entropy per unit time as a metric invariant of automorphism. Doklady Russ Acad Sci 124:754–755Google Scholar
  29. Latchoumane CFV, Ifeachor E, Hudson N, Wimalaratna S, Jeong J (2008) Dynamical nonstationarity analysis of resting EEGs in Alzheimer’s disease. In: Neural information processing. Springer, Berlin, pp 921–929Google Scholar
  30. Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31(5):439–449CrossRefPubMedGoogle Scholar
  31. Lippé S, Kovacevic N, McIntosh AR (2009) Differential maturation of brain signal complexity in the human auditory and visual system. Front Hum Neurosci 3:48CrossRefPubMedPubMedCentralGoogle Scholar
  32. Manuca R, Savit R (1996) Stationarity and nonstationarity in time series analysis. Physica D Nonlinear Phenom 99(2):134–161CrossRefGoogle Scholar
  33. Marshall PJ, Bar-Haim Y, Fox NA (2002) Development of the EEG from 5 months to 4 years of age. Clin Neurophysiol 113(8):1199–1208CrossRefPubMedGoogle Scholar
  34. Martinović Z, Jovanović V, Ristanović D (1998) EEG power spectra of normal preadolescent twins. Gender differences of quantitative EEG maturation. Clin Neurophysiol 28(3):231–248CrossRefGoogle Scholar
  35. McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13(8–9):861–870CrossRefPubMedGoogle Scholar
  36. McIntosh AR, Kovacevic N, Itier RJ (2008) Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol 4(7):e1000106CrossRefPubMedPubMedCentralGoogle Scholar
  37. McIntosh AR, Vakorin V, Kovacevic N, Wang H, Diaconescu A, Protzner AB (2013) Spatiotemporal dependency of age-related changes in brain signal variability. Cereb Cortex 24(7):1806–1817Google Scholar
  38. Meyer-Lindenberg A (1996) The evolution of complexity in human brain development: an EEG study. Electroencephalogr Clin Neurophysiol 99(5):405–411CrossRefPubMedGoogle Scholar
  39. Mišić B, Vakorin VA, Paus T, McIntosh AR (2011) Functional embedding predicts the variability of neural activity. Front Syst Neurosci 5:90PubMedPubMedCentralGoogle Scholar
  40. Mišić B, Doesburg SM, Fatima Z, Vidal J, Vakorin VA, Taylor MJ, McIntosh AR (2015) Coordinated information generation and mental flexibility: large-scale network disruption in children with autism. Cereb Cortex 25(9):2815–2827CrossRefPubMedGoogle Scholar
  41. Mizuno T, Takahashi T, Cho RY, Kikuchi M, Murata T, Takahashi K, Wada Y (2010) Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clin Neurophysiol 121(9):1438–1446CrossRefPubMedPubMedCentralGoogle Scholar
  42. Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30(4):150–158CrossRefPubMedGoogle Scholar
  43. Palva S, Palva JM (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16(4):219–230CrossRefPubMedGoogle Scholar
  44. Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25(15):3962–3972CrossRefPubMedGoogle Scholar
  45. Park JH, Kim S, Kim CH, Cichocki A, Kim K (2007) Multiscale entropy analysis of EEG from patients under different pathological conditions. Fractals 15(04):399–404CrossRefGoogle Scholar
  46. Pereda E, de La Cruz DM, Manas S, Garrido JM, López S, González JJ (2006) Topography of EEG complexity in human neonates: effect of the postmenstrual age and the sleep state. Neurosci Lett 394(2):152–157CrossRefPubMedGoogle Scholar
  47. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88(6):2297–2301CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rapp PE, Albano AM, Schmah TI, Farwell LA (1993) Filtered noise can mimic low-dimensional chaotic attractors. Phys Rev E 47(4):2289CrossRefGoogle Scholar
  49. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Phys Heart Circ Phys 278(6):H2039–H2049Google Scholar
  50. Schäfer CB, Morgan BR, Ye AX, Taylor MJ, Doesburg SM (2014) Oscillations, networks, and their development: MEG connectivity changes with age. Hum Brain Mapp 35(10):5249–5261CrossRefPubMedGoogle Scholar
  51. Scher MS, Waisanen H, Loparo K, Johnson MW (2005) Prediction of neonatal state and maturational change using dimensional analysis. J Clin Neurophysiol 22(3):159–165PubMedGoogle Scholar
  52. Schreiber T, Schmitz A (1997) Classification of time series data with nonlinear similarity measures. Phys Rev Lett 79(8):1475CrossRefGoogle Scholar
  53. Sinai YG (1959) On the notion of entropy of a dynamical system. Doklady Russ Acad Sci 124:768–771Google Scholar
  54. Stroganova TA, Orekhova EV, Posikera IN (1999) EEG alpha rhythm in infants. Clin Neurophysiol 110(6):997–1012CrossRefPubMedGoogle Scholar
  55. Takens F (1981) Detecting strange attractors in turbulence. Springer, BerlinCrossRefGoogle Scholar
  56. Uhlhaas PJ, Roux F, Singer W, Haenschel C, Sireteanu R, Rodriguez E (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci USA 106(24):9866–9871CrossRefPubMedPubMedCentralGoogle Scholar
  57. Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2010) Neural synchrony and the development of cortical networks. Trends Cogn Sci 14(2):72–80CrossRefPubMedGoogle Scholar
  58. Vakorin VA, McIntosh AR (2012) Mapping the multi-scale information content of complex brain signals. In: Principles of brain dynamics: global state interactions, pp 183–208Google Scholar
  59. Vakorin VA, Lippé S, McIntosh AR (2011a) Variability of brain signals processed locally transforms into higher connectivity with brain development. J Neurosci 31(17):6405–6413CrossRefPubMedGoogle Scholar
  60. Vakorin VA, Mišić B, Krakovska O, McIntosh AR (2011b) Empirical and theoretical aspects of generation and transfer of information in a neuromagnetic source network. Front Syst Neurosci 5:96CrossRefPubMedPubMedCentralGoogle Scholar
  61. Vakorin VA, McIntosh AR, Mišić B, Krakovska O, Poulsen C, Martinu K, Paus T (2013) Exploring age-related changes in dynamical non-stationarity in electroencephalographic signals during early adolescence. PLoS One 8(3), e57217CrossRefPubMedPubMedCentralGoogle Scholar
  62. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239CrossRefPubMedGoogle Scholar
  63. von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38(3):301–313CrossRefGoogle Scholar
  64. Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7(12):553–559CrossRefPubMedGoogle Scholar
  65. Zhang D, Ding H, Liu Y, Zhou C, Ding H, Ye D (2009) Neurodevelopment in newborns: a sample entropy analysis of electroencephalogram. Physiol Meas 30(5):491CrossRefPubMedGoogle Scholar
  66. Zhang YC (1991) Complexity and 1/f noise. A phase space approach. J Phys I 1(7):971–977Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyCanada

Personalised recommendations