Neurocognitive Decoding of Aesthetic Appreciation

  • Juan García-PrietoEmail author
  • Ernesto Pereda
  • Fernando Maestú


The neural mechanisms that mediate the aesthetic experience and judgment are complex and belong to higher hierarchically cognitive domains. They involve perception, emotion, memory, language, and possibly some other cognitive functions. This complexity is a source of controversy during discussions on the mind/brain interaction regarding aesthetic experience. Accordingly, neuroimaging experiments, mainly by means of fMRI, have identified several brain regions directly involved in aesthetic appreciation such as parts of medial and dorsal frontal cortex, left temporal and parietal regions, precuneus, and cingulate cortex.

The coherent engagement of different simultaneous cognitive subprocesses is certainly a source of confusion in the abundant body of knowledge related to neuroesthetics. Studies involving the characterization of such high hierarchy neural processes in terms of functional connectivity may shed light on the debate. Thus, brain networks active during aesthetic appreciation include medial parts of frontal cortex, precuneus, and posterior cingulate cortex. Moreover, by analyzing the dynamics of such brain networks, differential patterns might lead to a deeper understanding of beauty as a psychological construct.


Default Mode Network Brain Network Ventral Striatum Posterior Cingulate Cortex Superior Frontal Gyrus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aharon I, Etcoff N, Ariely D, Chabris CF, O’Connor E, Breiter HC (2001) Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron 32(3):537–551. doi: 10.1016/S0896-6273(01)00491-3 PubMedCrossRefGoogle Scholar
  2. Armstrong T, Detweiler-Bedell B (2008) Beauty as an emotion: the exhilarating prospect of mastering a challenging world. Rev Gen Psychol 12(4):305–329. doi: 10.1037/a0012558 CrossRefGoogle Scholar
  3. Attneave F, Arnoult MD (1956) The quantitative study of shape and pattern perception. Psychol Bull 53(6):452–471. doi: 10.1037/h0044049 PubMedCrossRefGoogle Scholar
  4. Augustin MD, Defranceschi B, Fuchs HK, Carbon C-CC, Hutzler F, Dorothee AM et al (2011) The neural time course of art perception: an ERP study on the processing of style versus content in art. Neuropsychologia 49(7):2071–2081. doi: 10.1016/j.neuropsychologia.2011.03.038 PubMedCrossRefGoogle Scholar
  5. Aviv V (2014) What does the brain tell us about abstract art? Front Hum Neurosci 8:85. doi: 10.3389/fnhum.2014.00085 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bartels A, Zeki S (2000) The architecture of the colour centre in the human visual brain: new results and a review. Eur J Neurosci 12(1):172–193. doi: 10.1046/j.1460-9568.2000.00905.x PubMedCrossRefGoogle Scholar
  7. Bassett DS, Bullmore ET (2009) Human brain networks in health and disease. Curr Opin Neurol 22(4):1015–1026. doi: 10.1016/j.tics.2011.03.006.Understanding CrossRefGoogle Scholar
  8. Berlyne DE (1970) Novelty, complexity, and hedonic value. Percept Psychophys 8:279–286. doi: 10.3758/BF03212593 CrossRefGoogle Scholar
  9. Berlyne DE (1972) Ends and means of experimental aesthetics. Can J Psychol/Revue Canadienne de Psychologie 26(4):303–325. doi: 10.1037/h0082439 CrossRefGoogle Scholar
  10. Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26(9):507–513. doi: 10.1016/S0166-2236(03)00233-9 PubMedCrossRefGoogle Scholar
  11. Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: “liking”, “wanting”, and learning. Curr Opin Pharmacol 9(1):65–73. doi: 10.1016/j.coph.2008.12.014 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Betti V, DellaPenna S, de Pasquale F, Mantini D, Marzetti L, Romani G, Corbetta M (2013) Natural scenes viewing alters the dynamics of functional connectivity in the human brain. Neuron 79(4):782–797. doi: 10.1016/j.neuron.2013.06.022 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bhattacharya J, Petsche H (2005) Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal Process 85:2161–2177. doi: 10.1016/j.sigpro.2005.07.007 CrossRefGoogle Scholar
  14. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541. doi: 10.1002/mrm.1910340409 PubMedCrossRefGoogle Scholar
  15. Blood AJ, Zatorre RJ, Bermudez P, Evans AC (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2(4):382–387. doi: 10.1038/7299 PubMedCrossRefGoogle Scholar
  16. Boselie F, Leeuwenberg E (1985) Birkhoff revisited: beauty as a function of effect and means. Am J Psychol 98(1):1–39. doi: 10.2307/1422765 PubMedCrossRefGoogle Scholar
  17. Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR et al (2011a) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56(3):1082–1104. doi: 10.1016/j.neuroimage.2011.02.054 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC et al (2011b) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci USA 108(40):16783–16788. doi: 10.1073/pnas.1112685108 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brown S, Martinez MJ, Parsons LM (2004) Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport 15(13):2033–2037. doi: 10.1097/00001756-200409150-00008 PubMedCrossRefGoogle Scholar
  20. Brown S, Gao X, Tisdelle L, Eickhoff SB, Liotti M (2011) Naturalizing aesthetics: brain areas for aesthetic appraisal across sensory modalities. Neuroimage 58(1):250–258. doi: 10.1016/j.neuroimage.2011.06.012 PubMedCrossRefGoogle Scholar
  21. Bucolo M, Grazia FD, Frasca M, Sapuppo F, Shannahoff-Khalsa D (2008) From synchronization to network theory: a strategy for MEG data analysis. In: 2008 Mediterranean conference on control and automation—conference proceedings, MED’08, pp 854–859. doi: 10.1109/MED.2008.4602069
  22. Calvo-Merino B, Jola C, Glaser DEE, Haggard P (2008) Towards a sensorimotor aesthetics of performing art. Conscious Cogn 17(3):911–922. doi: 10.1016/j.concog.2007.11.003 PubMedCrossRefGoogle Scholar
  23. Calvo-Merino B, Urgesi C, Orgs G, Aglioti SM, Haggard P (2010) Extrastriate body area underlies aesthetic evaluation of body stimuli. Exp Brain Res 204:447–456. doi: 10.1007/s00221-010-2283-6 PubMedCrossRefGoogle Scholar
  24. Carbon C-CC (2012) Dynamics of aesthetic appreciation. In: Human vision and electronic imaging XVII, 8291, 82911A–82911A–6. doi:10.1117/12.916468Google Scholar
  25. Casati R, Pignocchi A (2007) Mirror and canonical neurons are not constitutive of aesthetic response. Trends Cogn Sci 11(10):410. doi: 10.1016/j.tics.2007.07.007 PubMedCrossRefGoogle Scholar
  26. Cattell J, Glascock J, Washburn MF (1918) Experiments on a possible test of aesthetic judgment of pictures. Am J Psychol 29(3):333. doi: 10.2307/1414125 CrossRefGoogle Scholar
  27. Cela-Conde CJ, Marty G, Maestu F, Ortiz T, Munar E, Fernández A et al (2004) Activation of the prefrontal cortex in the human visual aesthetic perception. Proc Natl Acad Sci USA 101(16):6321–6325. doi: 10.1073/pnas.0401427101 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cela-Conde CJ, Ayala FJ, Munar E, Maestú F, Nadal M, Capó M a et al (2009) Sex-related similarities and differences in the neural correlates of beauty. Proc Natl Acad Sci USA 106(10):3847–3852. doi: 10.1073/pnas.0900304106 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cela-Conde CJ, Agnati L, Huston JP, Mora F, Nadal M (2011) The neural foundations of aesthetic appreciation. Prog Neurobiol 94(1):39–48. doi: 10.1016/j.pneurobio.2011.03.003 PubMedCrossRefGoogle Scholar
  30. Cela-Conde CJ, García-Prieto J, Ramasco JJ, Mirasso CR, Bajo R, Munar E et al (2013) Dynamics of brain networks in the aesthetic appreciation. Proc Natl Acad Sci USA 110(Supplement_2):10454–10461. doi: 10.1073/pnas.1302855110 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chatterjee A (2004) Prospects for a cognitive neuroscience of visual aesthetics. Bull Psychol Arts 4:55–60. doi: 10.1017/S0140525X00040607 Google Scholar
  32. Chatterjee A (2011) Neuroaesthetics: a coming of age story. J Cogn Neurosci 23(1):53–62. doi: 10.1162/jocn.2010.21457 PubMedCrossRefGoogle Scholar
  33. Chatterjee A, Vartanian O (2014) Neuroaesthetics. Trends Cogn Sci 18(7):370–375. doi: 10.1016/j.tics.2014.03.003 PubMedCrossRefGoogle Scholar
  34. Chokron S, De Agostini M (2000) Reading habits influence aesthetic preference. Cogn Brain Res 10(1–2):45–49. doi: 10.1016/S0926-6410(00)00021-5 CrossRefGoogle Scholar
  35. Cinzia DD, Vittorio G (2009) Neuroaesthetics: a review. Curr Opin Neurobiol 19(6):682–687. doi: 10.1016/j.conb.2009.09.001 PubMedCrossRefGoogle Scholar
  36. Cohen MX, Elger CE, Weber B (2008) Amygdala tractography predicts functional connectivity and learning during feedback-guided decision-making. Neuroimage 39(3):1396–1407. doi: 10.1016/j.neuroimage.2007.10.004 PubMedCrossRefGoogle Scholar
  37. Cohen MX, Axmacher N, Lenartz D, Elger CE, Sturm V, Schlaepfer TE (2009) Good vibrations: cross-frequency coupling in the human nucleus accumbens during reward processing. J Cogn Neurosci 21(5):875–889. doi: 10.1162/jocn.2009.21062 PubMedCrossRefGoogle Scholar
  38. Cupchik GC (1995) The legacy of Daniel E. Berlyne. Empir Stud Arts. doi: 10.2190/FLM8-6NQ7-N5WM-WLLT Google Scholar
  39. Cupchik GC, Vartanian O, Crawley A, Mikulis DJ (2009) Viewing artworks: contributions of cognitive control and perceptual facilitation to aesthetic experience. Brain Cogn 70(1):84–91. doi: 10.1016/j.bandc.2009.01.003 PubMedCrossRefGoogle Scholar
  40. Deco G, Corbetta M (2011) The dynamical balance of the brain at rest. Neuroscientist 17(1):107–123. doi: 10.1177/1073858409354384 PubMedCrossRefGoogle Scholar
  41. Di Dio C, Macaluso E, Rizzolatti G (2007) The golden beauty: brain response to classical and renaissance sculptures. PLoS One 2(11), e1201. doi: 10.1371/journal.pone.0001201 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dutton D (2009) The art instinct: beauty, pleasure, & human evolution. Oxford University Press. Retrieved from
  43. Elliott R (2003) Executive functions and their disorders. Br Med Bull 65:49–59. doi: 10.1093/bmb/ldg65.049 PubMedCrossRefGoogle Scholar
  44. Eysenck HJ (1972) Personal preferences, aesthetic sensitivity and personality in trained and untrained subjects. J Pers 40(4):544–557. doi: 10.1111/1467-6494.ep8970054 PubMedCrossRefGoogle Scholar
  45. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480. doi: 10.1016/j.tics.2005.08.011 PubMedCrossRefGoogle Scholar
  46. Frijda NH (1989) Aesthetic emotions and reality. Am Psychol. doi: 10.1037/0003-066X.44.12.1546 Google Scholar
  47. Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2(1–2):56–78. doi: 10.1002/hbm.460020107 CrossRefGoogle Scholar
  48. Germine L, Russell R, Bronstad PM, Blokland GAM, Smoller JW, Kwok H et al (2015) Individual aesthetic preferences for faces are shaped mostly by environments, not genes. Curr Biol 25(20):2684–2689. doi: 10.1016/j.cub.2015.08.048 PubMedCrossRefGoogle Scholar
  49. Gordon K (1923) A study of esthetic judgments. J Exp Psychol 6(1):36–43. doi: 10.1037/h0071285 CrossRefGoogle Scholar
  50. Granger GW (1955) Aesthetic measure applied to color harmony: an experimental test. J Gen Psychol 52(2):205–212. doi: 10.1080/00221309.1955.9920239 CrossRefGoogle Scholar
  51. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258. doi: 10.1073/pnas.0135058100 PubMedCrossRefGoogle Scholar
  52. Gross CG (1999) Brain, vision, memory: tales in the history of neuroscience. MIT Press. Retrieved from
  53. Hekkert P, Van Wieringen PCW (1996) Beauty in the eye of expert and nonexpert beholders: a study in the appraisal of art. Am J Psychol 109(3):389. doi: 10.2307/1423013 CrossRefGoogle Scholar
  54. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890. doi: 10.1038/nn.3101 PubMedCrossRefGoogle Scholar
  55. Höfel L, Jacobsen T (2007) Electrophysiological indices of processing aesthetics: spontaneous or intentional processes? Int J Psychophysiol 65(1):20–31. doi: 10.1016/j.ijpsycho.2007.02.007 PubMedCrossRefGoogle Scholar
  56. Ione A (2003) Examining Semir Zeki’s “Neural Concept Formation and Art: Dante, Michelangelo, Wagner”. J Conscious Stud 10(2):58–66Google Scholar
  57. Ishizu T, Zeki S (2011) Toward a brain-based theory of beauty. PLoS One 6(7), e21852. doi: 10.1371/journal.pone.0021852 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ishizu T, Zeki S (2013) The brain’s specialized systems for aesthetic and perceptual judgment. Eur J Neurosci 37(9):1413–1420. doi: 10.1111/ejn.12135 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jacobsen T (2002) Aesthetic judgments of novel graphic patterns: analyses of individual judgments. Percept Mot Skills 95(7):755. doi: 10.2466/PMS.95.7.755-766 PubMedCrossRefGoogle Scholar
  60. Jacobsen T (2006) Bridging the arts and sciences: a framework for the psychology of aesthetics. Leonardo 39(2):155–162. doi: 10.1162/leon.2006.39.2.155 CrossRefGoogle Scholar
  61. Jacobsen T, Höfel L (2003) Descriptive and evaluative judgment processes: behavioral and electrophysiological indices of processing symmetry and aesthetics. Cogn Affect Behav Neurosci 3(4):289–299. doi: 10.3758/CABN.3.4.289 PubMedCrossRefGoogle Scholar
  62. Jacobsen T, Schubotz RI, Höfel L, Cramon DYV (2005) Brain correlates of aesthetic judgment of beauty. Neuroimage 29(1):276–285. doi: 10.1016/j.neuroimage.2005.07.010 PubMedCrossRefGoogle Scholar
  63. Kawabata H, Zeki S (2004) Neural correlates of beauty. J Neurophysiol 91(4):1699–1705. doi: 10.1152/jn.00696.2003 PubMedCrossRefGoogle Scholar
  64. Kelly C, Biswal BB, Craddock RC, Castellanos FX, Milham MP (2012) Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn Sci 16(3):181–188. doi: 10.1016/j.tics.2012.02.001 PubMedCrossRefGoogle Scholar
  65. Kirk U, Skov M, Christensen MS, Nygaard N (2009a) Brain correlates of aesthetic expertise: a parametric fMRI study. Brain Cogn 69(2):306–315. doi: 10.1016/j.bandc.2008.08.004 PubMedCrossRefGoogle Scholar
  66. Kirk U, Skov M, Hulme O, Christensen MS, Zeki S (2009b) Modulation of aesthetic value by semantic context: an fMRI study. Neuroimage 44(3):1125–1132. doi: 10.1016/j.neuroimage.2008.10.009 PubMedCrossRefGoogle Scholar
  67. Koelsch S, Fritz T, v. Cramon DY, Müller K, Friederici AD (2006) Investigating emotion with music: an fMRI study. Hum Brain Mapp 27(3):239–250. doi: 10.1002/hbm.20180 PubMedCrossRefGoogle Scholar
  68. Konečni VJ, Sargent-Pollock D (1977) Arousal, positive and negative affect, and preference for Renaissance and 20th-century paintings. Motiv Emot 1(1):75–93. doi: 10.1007/BF00997582 CrossRefGoogle Scholar
  69. Lacey S, Hagtvedt H, Patrick VM, Anderson A, Stilla R, Deshpande G et al (2011) Art for reward’s sake: visual art recruits the ventral striatum. Neuroimage 55(1):420–433. doi: 10.1016/j.neuroimage.2010.11.027 PubMedCrossRefGoogle Scholar
  70. Lang PJ, Greenwald MK, Bradley MM, Hamm AO (1993) Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30(3):261–273. doi: 10.1111/j.1469-8986.1993.tb03352.x PubMedCrossRefGoogle Scholar
  71. Leder H, Nadal M (2014) Ten years of a model of aesthetic appreciation and aesthetic judgments: the aesthetic episode—developments and challenges in empirical aesthetics. Br J Psychol (London, England: 1953) 105(4):443–464. doi: 10.1111/bjop.12084 CrossRefGoogle Scholar
  72. Leder H, Belke B, Oeberst A, Augustin D (2004) A model of aesthetic appreciation and aesthetic judgments. Br J Psychol (London, England: 1953) 95(Pt 4):489–508. doi: 10.1348/0007126042369811 CrossRefGoogle Scholar
  73. Lengger PG, Fischmeister FPS, Leder H, Bauer H (2007) Functional neuroanatomy of the perception of modern art: a DC–EEG study on the influence of stylistic information on aesthetic experience. Brain Res 1158(1):93–102. doi: 10.1016/j.brainres.2007.05.001 PubMedCrossRefGoogle Scholar
  74. Liberzon I, Phan KL, Decker LR, Taylor SF (2003) Extended amygdala and emotional salience: a PET activation study of positive and negative affect. Neuropsychopharmacology 28(4):726–733. doi: 10.1038/sj.npp.1300113 PubMedCrossRefGoogle Scholar
  75. Lin C-S, Liu Y, Huang W-Y, Lu C-F, Teng S, Ju T-C et al (2013) Sculpting the intrinsic modular organization of spontaneous brain activity by art. PLoS One 8(6), e66761. doi: 10.1371/journal.pone.0066761 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Liu Y (2003) Engineering aesthetics and aesthetic ergonomics: theoretical foundations and a dual-process research methodology. Ergonomics 46(13–14):1273–1292. doi: 10.1080/00140130310001610829 PubMedCrossRefGoogle Scholar
  77. Liu Z, Fukunaga M, de Zwart JA, Duyn JH (2010) Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography. Neuroimage 51(1):102–111. doi: 10.1016/j.neuroimage.2010.01.092 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Livingstone M (2002) Vision and art: the biology of seeing. Abrams, New York, Retrieved from Google Scholar
  79. Locher P, Nagy Y (1996) Vision spontaneously establishes the percept of pictorial balance. Empir Stud Arts. doi: 10.2190/X8U3-CTQ6-A7J1-8JQ8 Google Scholar
  80. Lund FH, Anastasi A (1928) An interpretation of aesthetic experience. Am J Psychol 40(3):434. doi: 10.2307/1414460 CrossRefGoogle Scholar
  81. Nadal M (2013) The experience of art. Insights from neuroimaging. Prog Brain Res 204:135–158. doi: 10.1016/B978-0-444-63287-6.00007-5 PubMedCrossRefGoogle Scholar
  82. Nadal M, Munar E, Capo MA, Rossello J, Cela-Conde CJ (2008) Towards a framework for the study of the neural correlates of aesthetic preference. Spat Vis 21(3–5):379. doi: 10.1163/156856808784532653 PubMedCrossRefGoogle Scholar
  83. Nitschke JB, Sarinopoulos I, MacKiewicz KL, Schaefer HS, Davidson RJ (2006) Functional neuroanatomy of aversion and its anticipation. Neuroimage 29(1):106–116. doi: 10.1016/j.neuroimage.2005.06.068 PubMedCrossRefGoogle Scholar
  84. Nodine C, Locher P, Krupinski E (1993) The role of formal art training on perception and aesthetic judgment of art compositions. Leonardo 26(3):219–227. doi: 10.2307/1575815 CrossRefGoogle Scholar
  85. O’Doherty J, Winston J, Critchley H, Perrett D, Burt DM, Dolan RJ et al (2003) Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia 41(2):147–155. doi: 10.1016/S0028-3932(02)00145-8 PubMedCrossRefGoogle Scholar
  86. Parsons MJ (1987) How we understand art: a cognitive developmental account of aesthetic experience. Cambridge University Press, New York, NY, Retrieved from Google Scholar
  87. Pasquale FD, Della S, Snyder AZ, Lewis C, Mantini D, de Pasquale F et al (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci USA 107(13):6040–6045. doi: 10.1073/pnas.0913863107 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Peters HN (1942) The experimental study of aesthetic judgments. Psychol Bull 39(5):273–305. doi: 10.1037/h0057008 CrossRefGoogle Scholar
  89. Petersson KM, Nichols TE, Poline JB, Holmes AP (1999) Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. Philos Trans R Soc London Ser B Biol Sci 354(1387):1239–1260. doi: 10.1098/rstb.1999.0477 CrossRefGoogle Scholar
  90. Pihko E, Virtanen A, Saarinen V-M, Pannasch S, Hirvenkari L, Tossavainen T et al (2011) Experiencing art: the influence of expertise and painting abstraction level. Front Hum Neurosci 5:94. doi: 10.3389/fnhum.2011.00094 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Raichle ME, Jarrett C (2009) The restless brain. Psychologist 22(10):836–839. doi: 10.1089/brain.2011.0019 Google Scholar
  92. Ramachandran VS, Hirstein W (1999) The science of art. J Conscious Stud 6(6–7):15–35Google Scholar
  93. Ramachandran VS, Blakeslee S, Sacks OW (1998) Phantoms in the brain: probing the mysteries of the human mind. William Morrow, New YorkGoogle Scholar
  94. Roland PE, Hilgetag CC, Deco G (2014) Cortico-cortical communication dynamics. Front Syst Neurosci 8(May):19. doi: 10.3389/fnsys.2014.00019 PubMedPubMedCentralGoogle Scholar
  95. Rolls ET (2013) A biased activation theory of the cognitive and attentional modulation of emotion. Front Hum Neurosci 7:74. doi: 10.3389/fnhum.2013.00074 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. doi: 10.1016/j.neuroimage.2009.10.003 PubMedCrossRefGoogle Scholar
  97. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14(2):257–262. doi: 10.1038/nn.2726 PubMedCrossRefGoogle Scholar
  98. Santayana G (1896) The sense of beauty: being the outline of aesthetic theory., Boston, MA, Retrieved from CrossRefGoogle Scholar
  99. Singer, W. (2010). Temporal coherence: a versatile code for the definition of relations. In The senses: a comprehensive reference, vol 2, pp 1–9. doi: 10.1016/B978-012370880-9.00287-5 Google Scholar
  100. Solso RL (2001) Brain activities in a skilled versus a novice artist: an fMRI study. Leonardo 34(1):31–34. doi: 10.1162/002409401300052479 CrossRefGoogle Scholar
  101. Solso RL (2011) The cognitive neuroscience of art a preliminary FMRI observation. J Conscious Stud 8:75–85, Retrieved from Google Scholar
  102. Sporns O (2013) Making sense of brain network data. Nat Methods 10(6):491–493. doi: 10.1038/nmeth.2485 PubMedCrossRefGoogle Scholar
  103. Sporns O (2014) Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 17(5):652–660. doi: 10.1038/nn.3690 PubMedCrossRefGoogle Scholar
  104. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci 105(34):12569–12574. doi: 10.1073/pnas.0800005105 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Stein JL, Wiedholz LM, Bassett DS, Weinberger DR, Zink CF, Mattay VS, Meyer-Lindenberg A (2007) A validated network of effective amygdala connectivity. Neuroimage 36(3):736–745. doi: 10.1016/j.neuroimage.2007.03.022 PubMedCrossRefGoogle Scholar
  106. Tsukiura T, Cabeza R (2011) Remembering beauty: roles of orbitofrontal and hippocampal regions in successful memory encoding of attractive faces. Neuroimage 54(1):653–660. doi: 10.1016/j.neuroimage.2010.07.046 PubMedCrossRefGoogle Scholar
  107. van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17(12):683–696. doi: 10.1016/j.tics.2013.09.012 PubMedCrossRefGoogle Scholar
  108. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239. doi: 10.1038/35067550 PubMedCrossRefGoogle Scholar
  109. Vartanian O, Goel V (2004) Neuroanatomical correlates of aesthetic preference for paintings. Neuroreport 15(5):893–897. doi: 10.1097/00001756-200404090-00032 PubMedCrossRefGoogle Scholar
  110. Vessel EA, Starr GG, Rubin N (2012) The brain on art: intense aesthetic experience activates the default mode network. Front Hum Neurosci 6:66. doi: 10.3389/fnhum.2012.00066 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Vessel E a, Starr GG, Rubin N (2013) Art reaches within: aesthetic experience, the self and the default mode network. Front Neurosci 7:258. doi: 10.3389/fnins.2013.00258 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zeki S (1980) The representation of colours in the cerebral cortex. Nature 284(5755):412–418. doi: 10.1038/284412a0 PubMedCrossRefGoogle Scholar
  113. Zeki S (1998) Art and the brain. Daedalus Proc Am Acad Arts Sci 127(2):71–102. doi: 10.2307/20027491 Google Scholar
  114. Zeki S, Bartels A (1999) Toward a theory of visual consciousness. Conscious Cogn 8(2):225–259. doi: 10.1006/ccog.1999.0390 PubMedCrossRefGoogle Scholar
  115. Zeki S, Marini L (1998) Three cortical stages of colour processing in the human brain. Brain 121(9):1669–1685. doi: 10.1093/brain/121.9.1669 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Juan García-Prieto
    • 1
    • 2
    Email author
  • Ernesto Pereda
    • 1
    • 2
    • 3
  • Fernando Maestú
    • 2
  1. 1.Electrical Engineering and Bioengineering Group, Department of Industrial EngineeringUniversidad de La LagunaTenerifeSpain
  2. 2.Laboratory of Cognitive and Computational Neuroscience, CTB, UPM-UCMMadridSpain
  3. 3.ITB-CIBICANUniversidad de La LagunaTenerifeSpain

Personalised recommendations