Skip to main content

Thalamo-Cortical Interactions and Synchronous Oscillations in MEG Data

  • Chapter
  • First Online:
Book cover Multimodal Oscillation-based Connectivity Theory

Abstract

The thalamus has received a renewed interest in systems neuroscience because emerging evidence indicates that the thalamus may modulate cortical responses according to behavioral demands. Moreover, there is evidence to suggest that in addition to normal brain functioning, thalamic–cortical (TC) interactions are critically implicated in neuropsychiatric disorders, such as schizophrenia. In this chapter, we will discuss the possibility to examine TC interactions using magnetoencephalography (MEG), a technique that is commonly considered as too unreliable to monitor activity generated by thalamic sources. Here, we argue that if certain requirements are met, MEG can be employed to investigate TC interactions by combining advanced source reconstruction techniques and novel connectivity measures. Specifically, we summarize evidence from MEG experiments that examined alpha–gamma coupling in TC networks during resting-state recordings as well as data from a study that tested the effects of ketamine on neural oscillations in healthy volunteers. We will discuss the implication of these findings for the understanding of normal and abnormal brain functioning as well as further steps to validate and improve MEG as a noninvasive technique to probe interactions in TC circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors SP et al (2010a) Sensitivity of MEG and EEG to source orientation. Brain Topogr 23:227–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahlfors SP et al (2010b) Cancellation of EEG and MEG signals generated by extended and distributed sources. Hum Brain Mapp 31:140–149

    PubMed  PubMed Central  Google Scholar 

  • Attal Y, Schwartz D (2013) Assessment of subcortical source localization using deep brain activity imaging model with minimum norm operators: a MEG study. PLoS One 8, e59856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attal Y et al (2007) Modeling and detecting deep brain activity with MEG & EEG. Conf Proc IEEE Eng Med Biol Soc 2007:4937–4940

    Google Scholar 

  • Bastos AM et al (2014) Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations. J Neurosci 34:7639–7644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes MJ et al (2008) Optimising experimental design for MEG beamformer imaging. Neuroimage 39:1788–1802

    Article  PubMed  Google Scholar 

  • Buzsáki G, Wang X-J (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Castelo-Branco M et al (1998) Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J Neurosci 18:6395–6410

    CAS  PubMed  Google Scholar 

  • Chorlian DB et al (2006) Amplitude modulation of gamma band oscillations at alpha frequency produced by photic driving. Int J Psychophysiol 61:262–278

    Article  PubMed  Google Scholar 

  • Cohen MX et al (2009) Good vibrations: cross-frequency coupling in the human nucleus accumbens during reward processing. J Cogn Neurosci 21:875–889

    Article  PubMed  Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA 81:4586–4590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Curtis M et al (1989) Excitatory amino acids mediate responses elicited in vitro by stimulation of cortical afferents to reticularis thalami neurons of the rat. Neuroscience 33:275–283

    Article  PubMed  Google Scholar 

  • Deschênes M, Hu B (1990) Membrane resistance increase induced in thalamic neurons by stimulation of brainstem cholinergic afferents. Brain Res 513:339–342

    Article  PubMed  Google Scholar 

  • Diester I et al (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14:387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doesburg S et al (2016) Top-down alpha oscillatory network interactions during visuospatial attention orienting. Neuroimage 132:512–519

    Article  PubMed  Google Scholar 

  • Dugué L et al (2011) The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J Neurosci 31:11889–11893

    Article  PubMed  Google Scholar 

  • Dumas T et al (2013) MEG evidence for dynamic amygdala modulations by gaze and facial emotions. PLoS One 8, e74145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster BL, Parvizi J (2012) Resting oscillations and cross-frequency coupling in the human posteromedial cortex. Neuroimage 60:384–391

    Article  PubMed  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  PubMed  Google Scholar 

  • Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224

    Article  CAS  PubMed  Google Scholar 

  • Ghose GM, Freeman RD (1992) Oscillatory discharge in the visual system: does it have a functional role? J Neurophysiol 68:1558–1574

    CAS  PubMed  Google Scholar 

  • Golshani P, Jones EG (1999) Synchronized paroxysmal activity in the developing thalamocortical network mediated by corticothalamic projections and “silent” synapses. J Neurosci 19:2865–2875

    CAS  PubMed  Google Scholar 

  • Golshani P et al (1998) Progression of change in NMDA, non-NMDA, and metabotropic glutamate receptor function at the developing corticothalamic synapse. J Neurophysiol 80:143–154

    CAS  PubMed  Google Scholar 

  • Gross J et al (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98:694–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillery RW, Sherman SM (2011) Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res Rev 66:205–219

    Article  CAS  PubMed  Google Scholar 

  • Gunduz-Bruce H (2009) The acute effects of NMDA antagonism: from the rodent to the human brain. Brain Res Rev 60:279–286

    Article  CAS  PubMed  Google Scholar 

  • Haegens S et al (2011) α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl Acad Sci USA 108:19377–19382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B et al (1989) The cellular mechanism of thalamic ponto-geniculo-occipital waves. Neuroscience 31:25–35

    Article  CAS  PubMed  Google Scholar 

  • Hung Y et al (2010) Unattended emotional faces elicit early lateralized amygdala-frontal and fusiform activations. Neuroimage 50:727–733

    Article  PubMed  Google Scholar 

  • Hunt MJ, Kasicki S (2013) A systematic review of the effects of NMDA receptor antagonists on oscillatory activity recorded in vivo. J Psychopharmacol (Oxf Engl) 27:972–986

    Article  Google Scholar 

  • Jacobsen RB et al (2001) GABA(B) and NMDA receptors contribute to spindle-like oscillations in rat thalamus in vitro. J Neurophysiol 86:1365–1375

    CAS  PubMed  Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen O et al (2014) Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci 37:357–369

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    Article  CAS  PubMed  Google Scholar 

  • Kao CQ, Coulter DA (1997) Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro. J Neurophysiol 77:2661–2676

    CAS  PubMed  Google Scholar 

  • Kirov G et al (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17:142–153

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W et al (2007) EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res Rev 53:63–88

    Article  PubMed  Google Scholar 

  • Kocsis B (2012) Differential role of NR2A and NR2B subunits in N-methyl-D-aspartate receptor antagonist-induced aberrant cortical gamma oscillations. Biol Psychiatry 71:987–995

    Article  CAS  PubMed  Google Scholar 

  • Litvak V et al (2010) Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients. Neuroimage 50:1578–1588

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes da Silva FH et al (1980) Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalogr Clin Neurophysiol 50:449–456

    Article  CAS  PubMed  Google Scholar 

  • Lorincz ML et al (2009) Temporal framing of thalamic relay-mode firing by phasic inhibition during the alpha rhythm. Neuron 63:683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning JR et al (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29:13613–13620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KJ (2010) Broadband spectral change: evidence for a macroscale correlate of population firing rate? J Neurosci 30:6477–6479

    Article  CAS  PubMed  Google Scholar 

  • Miller KJ et al (2010) Dynamic modulation of local population activity by rhythm phase in human occipital cortex during a visual search task. Front Hum Neurosci 4:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37:4–15

    Article  CAS  PubMed  Google Scholar 

  • Monaghan DT, Cotman CW (1985) Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J Neurosci 5:2909–2919

    CAS  PubMed  Google Scholar 

  • Neuenschwander S et al (2002) Feed-forward synchronization: propagation of temporal patterns along the retinothalamocortical pathway. Philos Trans R Soc Lond B Biol Sci 357:1869–1876

    Article  PubMed  PubMed Central  Google Scholar 

  • Nolte G et al (2004) Localizing brain interactions from rhythmic EEG/MEG data. Conf Proc IEEE Eng Med Biol Soc 2:998–1001

    CAS  PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1998) Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schizophr Bull 24:267–283

    Article  PubMed  Google Scholar 

  • Osipova D et al (2008) Gamma power is phase-locked to posterior alpha activity. PLoS One 3, e3990

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkkonen L et al (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782

    Article  PubMed  Google Scholar 

  • Parnaudeau S et al (2013) Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinault D (2011) Dysfunctional thalamus-related networks in schizophrenia. Schizophr Bull 37:238–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinault D, Deschênes M (1992) Control of 40-Hz firing of reticular thalamic cells by neurotransmitters. Neuroscience 51:259–268

    Article  CAS  PubMed  Google Scholar 

  • Rasch MJ et al (2008) Inferring spike trains from local field potentials. J Neurophysiol 99:1461–1476

    Article  PubMed  Google Scholar 

  • Ribary U et al (1991) Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 88:11037–11041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux F et al (2013) The phase of thalamic alpha activity modulates cortical gamma-band activity: evidence from resting-state MEG recordings. J Neurosci 33:17827–17835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saalmann YB (2014) Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Front Syst Neurosci 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Saalmann YB, Kastner S (2009) Gain control in the visual thalamus during perception and cognition. Curr Opin Neurobiol 19:408–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saalmann YB, Kastner S (2011) Cognitive and perceptual functions of the visual thalamus. Neuron 71:209–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saalmann YB et al (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE et al (1990) N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. Proc Natl Acad Sci USA 87:4548–4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheeringa R et al (2011) Modulation of visually evoked cortical FMRI responses by phase of ongoing occipital alpha oscillations. J Neurosci 31:3813–3820

    Article  CAS  PubMed  Google Scholar 

  • Schmid MC et al (2012) Thalamic coordination of cortical communication. Neuron 75:551–552

    Article  CAS  PubMed  Google Scholar 

  • Schobel SA et al (2013) Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 78:81–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoffelen J-M, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30:1857–1865

    Article  PubMed  Google Scholar 

  • Sekihara K et al (2001) Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans Biomed Eng 48:760–771

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman SM (2012) Thalamocortical interactions. Curr Opin Neurobiol 22:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic, New York

    Google Scholar 

  • Sherman SM, Guillery RW (2006) Exploring the thalamus and its role in cortical function. MIT, Cambridge, MA

    Google Scholar 

  • Sherman SM, Guillery RW (2011) Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol 106:1068–1077

    Article  PubMed  Google Scholar 

  • Sherman SM, Koch C (1986) The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp Brain Res 63:1–20

    Article  CAS  PubMed  Google Scholar 

  • Singer W (1994) Neurobiology. A new job for the thalamus. Nature 369:444–445

    Article  CAS  PubMed  Google Scholar 

  • Spaak E et al (2012) Layer-specific entrainment of gamma-band neural activity by the alpha rhythm in monkey visual cortex. Curr Biol 22:2313–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staudigl T, Hanslmayr S (2013) Theta oscillations at encoding mediate the context-dependent nature of human episodic memory. Curr Biol 23:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Tesche CD (1996) Non-invasive imaging of neuronal population dynamics in human thalamus. Brain Res 729:253–258

    Article  CAS  PubMed  Google Scholar 

  • Timofeev I, Steriade M (1997) Fast (mainly 30–100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol 504(Pt 1):153–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo JB et al (2014) High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease. Neurobiol Dis 64:60–65

    Article  PubMed  Google Scholar 

  • Turner JP, Salt TE (1998) Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro. J Physiol 510(Pt 3):829–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168

    Article  CAS  PubMed  Google Scholar 

  • Urrestarazu E et al (2009) Beta activity in the subthalamic nucleus during sleep in patients with Parkinson’s disease. Mov Disord 24:254–260

    Article  PubMed  Google Scholar 

  • Van Veen BD et al (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880

    Article  PubMed  Google Scholar 

  • Varela FJ et al (1981) Perceptual framing and cortical alpha rhythm. Neuropsychologia 19:675–686

    Article  CAS  PubMed  Google Scholar 

  • Vicente R et al (2011) Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30:45–67

    Article  PubMed  Google Scholar 

  • Vijayan S, Kopell NJ (2012) Thalamic model of awake alpha oscillations and implications for stimulus processing. Proc Natl Acad Sci USA 109:18553–18558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Krosigk M et al (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364

    Article  Google Scholar 

  • Voytek B et al (2010) Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front Hum Neurosci 4:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Whittingstall K, Logothetis NK (2009) Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64:281–289

    Article  CAS  PubMed  Google Scholar 

  • Wibral M et al (2011) Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks. Prog Biophys Mol Biol 105:80–97

    Article  PubMed  Google Scholar 

  • Wibral M et al (2013) Measuring information-transfer delays. PLoS One 8, e55809. doi:10.1371/journal.pone.0055809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward ND et al (2012) Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry 169:1092–1099

    Article  PubMed  Google Scholar 

  • Wróbel A et al (2007) Two streams of attention-dependent beta activity in the striate recipient zone of cat’s lateral posterior-pulvinar complex. J Neurosci 27:2230–2240

    Article  PubMed  Google Scholar 

  • Yanagisawa T et al (2012) Regulation of motor representation by phase-amplitude coupling in the sensorimotor cortex. J Neurosci 32:15467–15475

    Article  CAS  PubMed  Google Scholar 

  • Yelnik J et al (1984) A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations. J Comp Neurol 227:200–213

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2012) NMDAR antagonist action in thalamus imposes δ oscillations on the hippocampus. J Neurophysiol 107:3181–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z et al (2009) The relationship between magnetic and electrophysiological responses to complex tactile stimuli. BMC Neurosci 10:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zumer JM et al (2010) MEG in the macaque monkey and human: distinguishing cortical fields in space and time. Brain Res 1345:110–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Uhlhaas Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uhlhaas, P.J., Roux, F. (2016). Thalamo-Cortical Interactions and Synchronous Oscillations in MEG Data. In: Palva, S. (eds) Multimodal Oscillation-based Connectivity Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-32265-0_5

Download citation

Publish with us

Policies and ethics