The Role of Local and Large-Scale Neuronal Synchronization in Human Cognition

  • Satu PalvaEmail author
  • J. Matias Palva


Human cognitive functions are subjectively coherent even though the underlying neuronal processing is achieved in many cortical regions in parallel. A number of animal electrophysiological studies have shown that neuronal synchronization may be a mechanism for the integration of such anatomically distributed neuronal processing as well as for the regulation of neuronal communication within these distributed networks. However, less is known about the functional and behavioral significance of the synchronization of neuronal oscillations in human brains. In recent years, several advancements have been made in source localization of the locally and large-scale synchronized networks by using noninvasive human magneto- and electroencephalography (EEG and MEG). These data have revealed the first glimpses into the structures of cortical networks underlying perceptual, attentional, and working memory functions.


Work Memory Local Field Potential Gamma Band Gamma Oscillation Neuronal Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore E (2008) Fractal connectivity of long-memory networks. Phys Rev E Stat Nonlin Soft Matter Phys 77:036104PubMedCrossRefGoogle Scholar
  2. Antiqueira L, Rodrigues FA, van Wijk BCM, Costa LF, Daffertshofer A (2010) Estimating complex cortical networks via surface recordings—a critical note. Neuroimage 53:439–449PubMedCrossRefGoogle Scholar
  3. Bar M, Tootell RB, Schacter DL, Greve DN, Fischl B, Mendola JD, Rosen BR, Dale AM (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29:529–535PubMedCrossRefGoogle Scholar
  4. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523PubMedCrossRefGoogle Scholar
  5. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R (2009) Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci USA 106(28):11747–11752PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bonnefond M, Jensen O (2012) Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr Biol 22:1969–1974PubMedCrossRefGoogle Scholar
  9. Bosman CA, Schoffelen JM, Brunet N, Oostenveld R, Bastos AM, Womelsdorf T, Rubehn B, Stieglitz T, De Weerd P, Fries P (2012) Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75:875–888PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedCrossRefGoogle Scholar
  11. Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862PubMedCrossRefGoogle Scholar
  12. Buschman TJ, Siegel M, Roy JE, Miller EK (2011) Neural substrates of cognitive capacity limitations. Proc Natl Acad Sci USA 108:11252–11255PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chun MM (2011) Visual working memory as visual attention sustained internally over time. Neuropsychologia 49:1407–1409PubMedCrossRefGoogle Scholar
  14. Cooper NR, Burgess AP, Croft RJ, Gruzelier JH (2006) Investigating evoked and induced electroencephalogram activity in task-related alpha power increases during an internally directed attention task. Neuroreport 17:205–208PubMedCrossRefGoogle Scholar
  15. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRefGoogle Scholar
  16. Cowan N (2001) The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci 24:87–114, discussion 114-85PubMedCrossRefGoogle Scholar
  17. David O, Garnero L, Cosmelli D, Varela FJ (2002) Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony. IEEE Trans Biomed Eng 49:975–987PubMedCrossRefGoogle Scholar
  18. de Pasquale F, Della Penna S, Sporns O, Romani GL, Corbetta M (2015) A dynamic core network and global efficiency in the resting human brain. Cereb Cortex (in press)Google Scholar
  19. Doesburg SM, Green JJ, McDonald JJ, Ward LM (2009) From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention. Brain Res 1303:97–110PubMedCrossRefGoogle Scholar
  20. Drew T, Horowitz TS, Wolfe JM, Vogel EK (2012) Neural measures of dynamic changes in attentive tracking load. J Cogn Neurosci 24:440–450PubMedCrossRefGoogle Scholar
  21. Freunberger R, Klimesch W, Griesmayr B, Sauseng P, Gruber W (2008) Alpha phase coupling reflects object recognition. Neuroimage 42:928–935PubMedCrossRefGoogle Scholar
  22. Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88:220–235PubMedCrossRefGoogle Scholar
  23. Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677PubMedCrossRefGoogle Scholar
  24. Grill-Spector K, Kushnir T, Hendler T, Malach R (2000) The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci 3:837–843PubMedCrossRefGoogle Scholar
  25. Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98:694–699PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101:13050–13055PubMedPubMedCentralCrossRefGoogle Scholar
  27. Haegens S, Osipova D, Oostenveld R, Jensen O (2010) Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Hum Brain Mapp 31:26–35PubMedGoogle Scholar
  28. Haegens S, Handel BF, Jensen O (2011) Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci 31:5197–5204PubMedCrossRefGoogle Scholar
  29. Hamalainen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42PubMedCrossRefGoogle Scholar
  30. Händel BF, Haarmeier T, Jensen O (2011) Alpha oscillations correlate with the successful inhibition of unattended stimuli. J Cogn Neurosci 23:2494–2502PubMedCrossRefGoogle Scholar
  31. Hesselmann G, Malach R (2011) The link between fMRI-BOLD activation and perceptual awareness is “stream-invariant” in the human visual system. Cereb Cortex 21:2829–2837PubMedCrossRefGoogle Scholar
  32. Hesselmann G, Hebart M, Malach R (2011) Differential BOLD activity associated with subjective and objective reports during “blindsight” in normal observers. J Neurosci 31:12936–12944PubMedCrossRefGoogle Scholar
  33. Hirvonen J, Palva S (2016) Cortical localization of phase and amplitude dynamics predicting access to somatosensory awareness. Hum Brain Mapp 37(1):311–326PubMedCrossRefGoogle Scholar
  34. Honkanen R, Rouhinen S, Wang SH, Palva JM, Palva S (2015) Gamma oscillations underlie the maintenance of feature-specific information and the contents of visual working memory. Cereb Cortex 25:3788–3801PubMedCrossRefGoogle Scholar
  35. Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341PubMedCrossRefGoogle Scholar
  36. Kitzbichler MG, Henson RN, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 31:8259–8270PubMedCrossRefGoogle Scholar
  37. Konig P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci 19:130–137PubMedCrossRefGoogle Scholar
  38. Kouider S, Dehaene S, Jobert A, Le Bihan D (2007) Cerebral bases of subliminal and supraliminal priming during reading. Cereb Cortex 17:2019–2029PubMedCrossRefGoogle Scholar
  39. Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R (2007) Phase coupling in a cerebro-cerebellar network at 8–13 hz during reading. Cereb Cortex 17:1476–1485PubMedCrossRefGoogle Scholar
  40. Kveraga K, Ghuman AS, Kassam KS, Aminoff EA, Hamalainen MS, Chaumon M, Bar M (2011) Early onset of neural synchronization in the contextual associations network. Proc Natl Acad Sci USA 108:3389–3394PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lange J, Oostenveld R, Fries P (2013) Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception. J Neurosci 33:3212–3220PubMedCrossRefGoogle Scholar
  42. Leaver AM, Rauschecker JP (2010) Cortical representation of natural complex sounds: effects of acoustic features and auditory object category. J Neurosci 30:7604–7612PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hamalainen MS (2006) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage 31:160–171PubMedCrossRefGoogle Scholar
  44. Linden DE, Bittner RA, Muckli L, Waltz JA, Kriegeskorte N, Goebel R, Singer W, Munk MH (2003) Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage 20:1518–1530PubMedCrossRefGoogle Scholar
  45. Lou HC, Gross J, Biermann-Ruben K, Kjaer TW, Schnitzler A (2010) Coherence in consciousness: paralimbic gamma synchrony of self-reference links conscious experiences. Hum Brain Mapp 31:185–192PubMedGoogle Scholar
  46. Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390:279–281PubMedCrossRefGoogle Scholar
  47. Luck SJ, Vogel EK (2013) Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn Sci 17:391–400PubMedPubMedCentralCrossRefGoogle Scholar
  48. Marois R, Yi DJ, Chun MM (2004) The neural fate of consciously perceived and missed events in the attentional blink. Neuron 41:465–472PubMedCrossRefGoogle Scholar
  49. Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E (2007) Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci 27:2858–2865PubMedCrossRefGoogle Scholar
  50. Micheloyannis S, Vourkas M, Tsirka V, Karakonstantaki E, Kanatsouli K, Stam CJ (2009) The influence of ageing on complex brain networks: a graph theoretical analysis. Hum Brain Mapp 30:200–208PubMedCrossRefGoogle Scholar
  51. Mohr HM, Goebel R, Linden DE (2006) Content- and task-specific dissociations of frontal activity during maintenance and manipulation in visual working memory. J Neurosci 26:4465–4471PubMedCrossRefGoogle Scholar
  52. Munk MH, Linden DE, Muckli L, Lanfermann H, Zanella FE, Singer W, Goebel R (2002) Distributed cortical systems in visual short-term memory revealed by event-related functional magnetic resonance imaging. Cereb Cortex 12:866–876PubMedCrossRefGoogle Scholar
  53. Pallesen KJ, Bailey CJ, Brattico E, Gjedde A, Palva JM, Palva S (2015) Experience drives synchronization: the phase and amplitude dynamics of neural oscillations to musical chords are differentially modulated by musical expertise. PLoS One 10, e0134211PubMedPubMedCentralCrossRefGoogle Scholar
  54. Palva S, Palva JM (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16:219–230PubMedCrossRefGoogle Scholar
  55. Palva S, Palva JM, Shtyrov Y, Kujala T, Ilmoniemi RJ, Kaila K, Naatanen R (2002) Distinct gamma-band evoked responses to speech and non-speech sounds in humans. J Neurosci 22:RC211PubMedGoogle Scholar
  56. Palva JM, Palva S, Kaila K (2005a) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25:3962–3972PubMedCrossRefGoogle Scholar
  57. Palva S, Linkenkaer-Hansen K, Naatanen R, Palva JM (2005b) Early neural correlates of conscious somatosensory perception. J Neurosci 25:5248–5258PubMedCrossRefGoogle Scholar
  58. Palva JM, Monto S, Kulashekhar S, Palva S (2010a) Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci USA 107:7580–7585PubMedPubMedCentralCrossRefGoogle Scholar
  59. Palva S, Monto S, Palva JM (2010b) Graph properties of synchronized cortical networks during visual working memory maintenance. Neuroimage 49:3257–3268PubMedCrossRefGoogle Scholar
  60. Palva S, Kulashekhar S, Hamalainen M, Palva JM (2011) Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention. J Neurosci 31:5013–5025PubMedPubMedCentralCrossRefGoogle Scholar
  61. Park H, Lee DS, Kang E, Kang H, Hahm J, Kim JS, Chung CK, Jensen O (2014) Blocking of irrelevant memories by posterior alpha activity boosts memory encoding. Hum Brain Mapp 35:3972–3987PubMedCrossRefGoogle Scholar
  62. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, Tanaka H, Hirata K, John ER, Prichep L, Biscay-Lirio R, Kinoshita T (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans A Math Phys Eng Sci 369:3768–3784PubMedCrossRefGoogle Scholar
  63. Pastor MA, Artieda J, Arbizu J, Marti-Climent JM, Penuelas I, Masdeu JC (2002) Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 hz. J Neurosci 22:10501–10506PubMedGoogle Scholar
  64. Pessoa L, Gutierrez E, Bandettini P, Ungerleider L (2002) Neural correlates of visual working memory: FMRI amplitude predicts task performance. Neuron 35:975–987PubMedCrossRefGoogle Scholar
  65. Pollok B, Sudmeyer M, Gross J, Schnitzler A (2005) The oscillatory network of simple repetitive bimanual movements. Brain Res Cogn Brain Res 25:300–311PubMedCrossRefGoogle Scholar
  66. Pollok B, Krause V, Butz M, Schnitzler A (2009) Modality specific functional interaction in sensorimotor synchronization. Hum Brain Mapp 30:1783–1790PubMedCrossRefGoogle Scholar
  67. Polonsky A, Blake R, Braun J, Heeger DJ (2000) Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci 3:1153–1159PubMedCrossRefGoogle Scholar
  68. Prabhakaran V, Narayanan K, Zhao Z, Gabrieli JD (2000) Integration of diverse information in working memory within the frontal lobe. Nat Neurosci 3:85–90PubMedCrossRefGoogle Scholar
  69. Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724PubMedPubMedCentralCrossRefGoogle Scholar
  70. Reynolds JH, Chelazzi L (2004) Attentional modulation of visual processing. Annu Rev Neurosci 27:611–647PubMedCrossRefGoogle Scholar
  71. Riesenhuber M, Poggio T (2002) Neural mechanisms of object recognition. Curr Opin Neurobiol 12:162–168PubMedCrossRefGoogle Scholar
  72. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–433PubMedCrossRefGoogle Scholar
  73. Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18:2010–2018PubMedCrossRefGoogle Scholar
  74. Rouhinen S, Panula J, Palva JM, Palva S (2013) Load dependence of beta and gamma oscillations predicts individual capacity of visual attention. J Neurosci 33:19023–19033PubMedCrossRefGoogle Scholar
  75. Roux F, Wibral M, Mohr HM, Singer W, Uhlhaas PJ (2012) Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J Neurosci 32:12411–12420PubMedCrossRefGoogle Scholar
  76. Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE (2000) The prefrontal cortex: response selection or maintenance within working memory? Science 288:1656–1660PubMedCrossRefGoogle Scholar
  77. Rubinov M, Sporns O (2009) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069PubMedCrossRefGoogle Scholar
  78. Rutter L, Nadar SR, Holroyd T, Carver FW, Apud J, Weinberger DR, Coppola R (2013) Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks. Front Comput Neurosci 7:93PubMedPubMedCentralCrossRefGoogle Scholar
  79. Sacchet MD, LaPlante RA, Wan Q, Pritchett DL, Lee AKC, Hämäläinen M, Moore CI, Kerr CE, Jones SR (2015) Attention drives synchronization of alpha and beta rhythms between right inferior frontal and primary sensory neocortex. J Neurosci 35:2074–2082PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sadaghiani S, Hesselmann G, Kleinschmidt A (2009) Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J Neurosci 29:13410–13417PubMedCrossRefGoogle Scholar
  81. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, Kleinschmidt A (2010) Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J Neurosci 30:10243–10250PubMedCrossRefGoogle Scholar
  82. Sakai K, Rowe JB, Passingham RE (2002) Active maintenance in prefrontal area 46 creates distractor-resistant memory. Nat Neurosci 5:479–484PubMedGoogle Scholar
  83. Salazar RF, Dotson NM, Bressler SL, Gray CM (2012) Content-specific fronto-parietal synchronization during visual working memory. Science 338:1097–1100PubMedPubMedCentralCrossRefGoogle Scholar
  84. Sauseng P, Klimesch W, Doppelmayr M, Pecherstorfer T, Freunberger R, Hanslmayr S (2005) EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum Brain Mapp 26:148–155PubMedCrossRefGoogle Scholar
  85. Schoffelen JM, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30:1857–1865PubMedCrossRefGoogle Scholar
  86. Schroeder CE, Lakatos P (2009) The gamma oscillation: master or slave? Topogr, BrainGoogle Scholar
  87. Siebenhühner F, Lobier M, Wang SH, Satu P, Matias Palva J (2016) Measuring large-scale synchronization with human MEG and EEG: challenges and solutions. In: Palva S (ed) Multimodal oscillation-based connectivity theory. Springer, HeidelbergGoogle Scholar
  88. Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60:709–719PubMedCrossRefGoogle Scholar
  89. Siegel M, Warden MR, Miller EK (2009) Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci USA 106:21341–21346PubMedPubMedCentralCrossRefGoogle Scholar
  90. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(49–65):111–125Google Scholar
  91. Singer W (2009) Distributed processing and temporal codes in neuronal networks. Cogn Neurodyn 3:189–196PubMedPubMedCentralCrossRefGoogle Scholar
  92. Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355:25–28PubMedCrossRefGoogle Scholar
  93. Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 hz visual responses in human. J Neurosci 16:4240–4249PubMedGoogle Scholar
  94. Tallon-Baudry C, Bertrand O, Delpuech C, Permier J (1997) Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci 17:722–734PubMedGoogle Scholar
  95. Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18:4244–4254PubMedGoogle Scholar
  96. Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:9494–9502PubMedCrossRefGoogle Scholar
  97. Todd JJ, Marois R (2004) Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428:751–754PubMedCrossRefGoogle Scholar
  98. Tong F, Nakayama K, Vaughan JT, Kanwisher N (1998) Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21:753–759PubMedCrossRefGoogle Scholar
  99. Tsubomi H, Fukuda K, Watanabe K, Vogel EK (2013) Neural limits to representing objects still within view. J Neurosci 33:8257–8263PubMedPubMedCentralCrossRefGoogle Scholar
  100. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442PubMedCrossRefGoogle Scholar
  101. Womelsdorf T, Schoffelen J, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science (New York) 316:1609–1612CrossRefGoogle Scholar
  102. Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20:RC63PubMedGoogle Scholar
  103. Xu Y, Chun MM (2006) Dissociable neural mechanisms supporting visual short-term memory for objects. Nature 440:91–95PubMedCrossRefGoogle Scholar
  104. Xu Y, Chun MM (2009) Selecting and perceiving multiple visual objects. Trends Cogn Sci 13:167–174PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhang W, Luck SJ (2008) Discrete fixed-resolution representations in visual working memory. Nature 453:233–235PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zumer JM, Scheeringa R, Schoffelen JM, Norris DG, Jensen O (2014) Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biol 12, e1001965PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Neuroscience CenterUniversity of HelsinkiHelsinkiFinland

Personalised recommendations