Dynamical Network States as Predisposition of Perception

  • Nicholas A. Peatfield
  • Dawoon Choi
  • Nathan WeiszEmail author


The neural correlates of consciousness have been addressed utilizing some well-controlled stimulus presentation, i.e., in a poststimulus phase. However, an increasing amount of evidence using near-threshold stimuli shows robust effects in the prestimulus phase, in particular in the alpha range, predicting whether the upcoming stimulus will be perceived. Conventionally, this has been linked to inhibition ideas surrounding alpha oscillations, meaning that local excitability (i.e., whether a neural assembly is closer to discharge threshold) is the determining factor. Yet, this very “local” interpretation is at odds with most poststimulus data as well as major theoretical frameworks. In this chapter, we will push forward an alternative interpretation, i.e., that the functional neural architecture is decisive, in particular, the coupling patterns of relevant sensory areas. This new framework allows to bridge the apparent explanatory gap between the mainstream prestimulus literature and the current ideas on conscious perception. We will give examples from our laboratory.


Transcranial Magnetic Stimulation Attentional Blink Brain State Binocular Rivalry Average Short Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baars BJ (1988) A cognitive theory of consciousness. Cambridge University Press, CambridgeGoogle Scholar
  2. Baars BJ (2002) The conscious access hypothesis: origins and recent evidence. Trends Cognit Sci 6(1):47–52. doi: 10.1016/S1364-6613(00)01819-2 CrossRefGoogle Scholar
  3. Bernasconi F, Manuel AL, Murray MM, Spierer L (2011) Pre-stimulus beta oscillations within left posterior sylvian regions impact auditory temporal order judgment accuracy. Int J Psychophysiol 79(2):244–248. doi: 10.1016/j.ijpsycho.2010.10.017 CrossRefPubMedGoogle Scholar
  4. Blake R, Brascamp J, Heeger DJ (2014) Can binocular rivalry reveal neural correlates of consciousness? Philos Trans R Soc Lond B Biol Sci 369(1641), 20130211. doi: 10.1098/rstb.2013.0211 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29(24):7869–7876. doi: 10.1523/JNEUROSCI.0113-09.2009 CrossRefPubMedGoogle Scholar
  6. Chen ACN, Feng W, Zhao H, Yin Y, Wang P (2008) EEG default mode network in the human brain: spectral regional field powers. Neuroimage 41(2):561–574. doi: 10.1016/j.neuroimage.2007.12.064 CrossRefPubMedGoogle Scholar
  7. Crick F, Koch C (2003) A framework for consciousness. Nat Neurosci 6(2):119–126. doi: 10.1038/nn0203-119 CrossRefPubMedGoogle Scholar
  8. Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70(2):200–227. doi: 10.1016/j.neuron.2011.03.018 CrossRefPubMedGoogle Scholar
  9. Dehaene S, Naccache L, Cohen L, Bihan DL, Mangin JF, Poline JB, Rivière D (2001) Cerebral mechanisms of word masking and unconscious repetition priming. Nat Neurosci 4(7):752–758. doi: 10.1038/89551 CrossRefPubMedGoogle Scholar
  10. Dehaene S, Sergent C, Changeux J-P (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA 100(14):8520–8525. doi: 10.1073/pnas.1332574100 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C (2006) Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10(5):204–211. doi: 10.1016/j.tics.2006.03.007 CrossRefPubMedGoogle Scholar
  12. Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Modulation of longrange neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101(35):13050–13055. doi: 10.1073/pnas.0400266101 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Haegens S, Nácher V, Luna R, Romo R, Jensen O (2011) α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl Acad Sci USA 108(48):19377–19382. doi: 10.1073/pnas.1117190108 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hari R, Salmelin R (1997) Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 20(1):44–49. doi: 10.1016/S0166-2236(96)10065-5 CrossRefPubMedGoogle Scholar
  15. Herrmann CS, Rach S, Neuling T, Strüber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 7:1–13. doi: 10.3389/fnhum.2013.00279 CrossRefGoogle Scholar
  16. Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci R Soc 273(1585):503–511. doi: 10.1098/rspb.2005.3354 CrossRefGoogle Scholar
  17. Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186. doi: 10.3389/fnhum.2010.00186 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Keil J, Müller N, Hartmann T, Weisz N (2014) Prestimulus beta power and phase synchrony influence the sound-induced flash illusion. Cereb Cortex 24(5):1278–1288. doi: 10.1093/cercor/bhs409 CrossRefPubMedGoogle Scholar
  19. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113. doi: 10.1126/science.1154735 CrossRefPubMedGoogle Scholar
  20. Leske S, Ruhnau P, Frey J, Lithari C, Müller N, Hartmann T, Weisz N (2015) Prestimulus network integration of auditory cortex predisposes near-threshold perception independently of local excitability. Cereb Cortex 25(12):4898–4907. doi: 10.1093/cercor/bhv212 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mazaheri A, Jensen O (2008) Asymmetric amplitude modulations of brain oscillations generate slow evoked responses. J Neurosci 28(31):7781–7787. doi: 10.1523/JNEUROSCI.1631-08.2008 CrossRefPubMedGoogle Scholar
  22. Neuling T, Ruhnau P, Fuscà M, Demarchi G, Herrmann CS, Weisz N (2015) Friends, not foes: magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation. Neuroimage 118:406–413. doi: 10.1016/j.neuroimage.2015.06.026 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18(9):2010–2018. doi: 10.1093/cercor/bhm229 CrossRefPubMedGoogle Scholar
  24. Ruhnau P, Hauswald A, Weisz N (2014) Investigating ongoing brain oscillations and their influence on conscious perception—network states and the window to consciousness. Front Psychol 5:1230. doi: 10.3389/fpsyg.2014.01230 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sergent C, Baillet S, Dehaene S (2005) Timing of the brain events underlying access to consciousness during the attentional blink. Nat Neurosci 8(10):1391–1400. doi: 10.1038/nn1549 CrossRefPubMedGoogle Scholar
  26. Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60(4):709–719. doi: 10.1016/j.neuron.2008.09.010 CrossRefPubMedGoogle Scholar
  27. Supèr H, Spekreijse H, Lamme VA (2001) Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat Neurosci 4(3):304–310. doi: 10.1038/85170 CrossRefPubMedGoogle Scholar
  28. Super H, van der Togt C, Spekreijse H, Lamme VAF (2003) Internal state of monkey primary visual cortex (V1) predicts figure-ground perception. J Neurosci 23(8):3407–3414, Retrieved from PubMedGoogle Scholar
  29. Tsuchiya N, Koch C (2005) Continuous flash suppression reduces negative afterimages. Nat Neurosci 8(8):1096–1101. doi: 10.1167/4.8.61 CrossRefPubMedGoogle Scholar
  30. Van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28(8):1816–1823. doi: 10.1523/JNEUROSCI.1853-07.2008 CrossRefPubMedGoogle Scholar
  31. Weisz N, Wühle A, Monittola G, Demarchi G, Frey J, Popov T, Braun C (2014) Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception. Proc Natl Acad Sci USA 111(4):E417–E425. doi: 10.1073/pnas.1317267111 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nicholas A. Peatfield
    • 1
    • 3
  • Dawoon Choi
    • 2
  • Nathan Weisz
    • 1
    Email author
  1. 1.Centre for Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
  2. 2.Department of PsychologyUniversity of British ColumbiaVancouverCanada
  3. 3.Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyCanada

Personalised recommendations