Advertisement

Integral Sliding Mode Control

  • Mirza Tariq HamayunEmail author
  • Christopher Edwards
  • Halim Alwi
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 61)

Abstract

Variable Structure Control Systems (VSCS) are a class of systems where the control law, as a function of the system state, is deliberately changed (from one structure to another) according to some predefined rules: for example a relay system . During a sliding mode the closed-loop system response is constrained to evolve along a sliding surface in the state-space to an equilibrium point. In sliding mode schemes, a switching function typically dictates which structure of control law is to be used at a particular time instant, depending on the position of the state from the sliding surface .

Keywords

Slide Mode Control Slide Mode Controller Linear Quadratic Regulator Linear Time Invariant Fault Tolerant Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Edwards, C., Spurgeon, S.K.: Sliding Mode Control, Theory and Applications. Taylor and Francis, London (1998)zbMATHGoogle Scholar
  2. 2.
    Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birkhauser, New York (2013)Google Scholar
  3. 3.
    Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second order sliding mode control. IEEE Trans. Autom. Control 43(2), 241–246 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice Hall International Edition, Upper Saddle River (1989)Google Scholar
  5. 5.
    Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, London (1999)Google Scholar
  6. 6.
    Utkin, V.: Sliding mode control. In: Sabanovic, A., Fridman, L.M., Spurgeon, S.K. (eds.) Variable Structure Systems: From Principles to Implementation. IEE Control Series 66, pp. 3–17. IEE, London (2004)CrossRefGoogle Scholar
  7. 7.
    Utkin, V.: Variable structure systems with sliding mode. IEEE Trans. Autom. Control 22(2), 212–222 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Matthews, G.P., DeCarlo, R.A.: Decentralized tracking for a class of interconnected nonlinear systems using variable structure control. Automatica 24(2), 187–193 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the 35th IEEE Conference on Decision and Control (1996)Google Scholar
  10. 10.
    Wang, J., Lee, T., Juang, Y.: New methods to design an integral variable structure controller. IEEE Trans. Autom. Control 41(1), 140–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cao, W., Xu, J.: Nonlinear integral type sliding surface for both matched and unmatched uncertain systems. IEEE Trans. Autom. Control 49(8), 1355–1360 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Xu, J., Pan, Y., Lee, T.: Analysis and design of integral sliding mode control based on Lyapunov’s direct method. In: Proceedings of the American Control Conference (2003)Google Scholar
  13. 13.
    Castanos, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control 51(5), 853–858 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fridman, L., Poznyak, A., Bejarano, F.J.: Robust LQ Output Control: Integral Sliding Mode Approach. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  15. 15.
    Burton, J.A., Zinober, A.S.: Continuous approximation of variable structure control. Int. J. Syst. Sci. 17(6), 875–885 (1986)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wells, S.R., Hess, R.A.: Multi-input/multi-output sliding mode control for a tailless fighter aircraft. J. Guid., Control, Dyn. 26(3), 463–473 (2003)CrossRefGoogle Scholar
  17. 17.
    Hess, R.A., Wells, S.R.: Sliding mode control applied to reconfigurable flight control design. J. Guid., Control Dyn. 26, 452–462 (2003)CrossRefGoogle Scholar
  18. 18.
    Vetter, T.K., Wells, S.R., Hess, R.A.: Designing for damage-robust flight control design using sliding mode techniques. Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 217, 245–261 (2003)CrossRefGoogle Scholar
  19. 19.
    Shtessel, Y., Buffington, J., Banda, S.: Tailless aircraft flight control using multiple time scale re-configurable sliding modes. IEEE Trans. Control Syst. Technol. 10, 288–296 (2002)CrossRefGoogle Scholar
  20. 20.
    Shin, D., Moon, G., Kim, Y.: Design of reconfigurable flight control system using adaptive sliding mode control: actuator fault. Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 219, 321–328 (2005)CrossRefGoogle Scholar
  21. 21.
    Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault Tolerant Control Using Sliding Modes. Advances in Industrial Control Series. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ríos, H., Kamal, S., Fridman, L.M., Zolghadri, A.: Fault tolerant control allocation via continuous integral sliding-modes: a HOSM-observer approach. Automatica 51, 318–325 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mirza Tariq Hamayun
    • 1
    Email author
  • Christopher Edwards
    • 2
  • Halim Alwi
    • 2
  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.College of Engineering Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations