Fault Tolerant Control

  • Mirza Tariq HamayunEmail author
  • Christopher Edwards
  • Halim Alwi
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 61)


Control is used extensively in industry where it plays an important role in increasing productivity, but it is required to operate safely—especially where interaction with humans takes place. Particularly in safety critical systems like chemical plants, nuclear reactors, aircraft etc., reliability of the system is very important. Broadly speaking, control systems that have such capabilities, are termed Fault Tolerant Control (FTC) systems. In this chapter, different terminologies used in the FTC literature are defined, the concepts of faults and failures are distinguished, and their classification is explained.


Fault Tolerant Controller reliabilityReliability Passive Fault Tolerant Control (PFTC) Actuator Faults redundancyRedundancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Isermann, R., Ballé, P.: Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Pract. 5(5), 709–719 (1997)CrossRefGoogle Scholar
  2. 2.
    Verhaegen, M., Kanev, S., Hallouzi, R., Jones, C., Maciejowski, J., Smail, H.: Fault tolerant flight control - a survey. In Edwards, C., Lombaerts, T., Smaili, H. (eds.) Fault Tolerant Flight Control of LNCIS, vol. 399, pp. 47–89. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault Tolerant Control Using Sliding Modes. Advances in Industrial Control Series. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brire, D., Traverse, P.: Airbus A320/A330/A340 electrical flight controls: a family of fault-tolerant systems. In: Digest of Papers FTCS-23 The Twenty-Third International Symposium on Fault-Tolerant Computing, pp. 616–623 (1993)Google Scholar
  5. 5.
    Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32, 229–252 (2008)CrossRefGoogle Scholar
  6. 6.
    Aström, K.J., Wittenmark, B.: Adaptive Control, 2nd edn. Addison Wesley, Boston (1995)Google Scholar
  7. 7.
    Dumont, G.A., Huzmezan, M.: Concepts, methods and techniques in adaptive control. In: Proceedings of the American Control Conference, pp. 1137–1150 (2002)Google Scholar
  8. 8.
    Magni, J.F., Bennani, S., Terlouw, J.: Robust Flight Control: A Design Challenge. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Jung, B., Kim, Y., Ha, C.: Fault tolerant flight control system design using a multiple model adaptive controller. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 223, 39–50 (2009)CrossRefGoogle Scholar
  10. 10.
    Davidson, J.B., Lallman, F.J., Bundick, W.T.: Real-time adaptive control allocation applied to a high performance aircraft. In: 5th SIAM Conference on Control and Its Application, (2001)Google Scholar
  11. 11.
    Bošković, J.D., Mehra, R.K.: Control allocation in over-actuated aircraft under position and rate limiting. In: Proceedings of the American Control Conference, (2002)Google Scholar
  12. 12.
    Ducard, G.: Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles. Advances in Industrial Control Series. Springer, London (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, Y., Suresh, V.S., Jiang, B., Theilliol, D.: Reconfigurable control allocation against aircraft control effector failures. In: Proceedings of the 16th IEEE International Conference on Control Applications, (2007)Google Scholar
  14. 14.
    Härkegård, O., Glad, S.T.: Resolving actuator redundancy - optimal control vs. control allocation. Automatica 41, 137–144 (2005)Google Scholar
  15. 15.
    Alwi, H., Edwards, C.: Fault tolerant control using sliding modes with on-line control allocation. Automatica 44, 1859–1866 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Buffington, J.M., Enns, D.F.: Lyapunov stability analysis of daisy chain control allocation. J. Guid. Control Dyn. 19, 1226–1230 (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Oppenheimer, M., Doman, D., Bolender, M.: Control allocation for overactuated systems. In: 14th IEEE Conference on Control and Automation MED 06, pp. 1–6 (2006)Google Scholar
  18. 18.
    Buffington, J.: Tailless aircraft control allocation, In: AIAA Guidance, Navigation and Control, pp. 737–747 (1997)Google Scholar
  19. 19.
    Hess, R.A., Wells, S.R.: Sliding mode control applied to reconfigurable flight control design. J. Guid. Control Dyn. 26, 452–462 (2003)CrossRefGoogle Scholar
  20. 20.
    Khelassi, A., Jiang, J., Theilliol, D., Weber, P., Zhang, Y.M.: Reconfiguration of control inputs for overactuated systems based on actuators health, pp. 13729–13734. 18th IFAC World Congress, Milano (2011)Google Scholar
  21. 21.
    Yan-Ping, F., Yue-Hua, C., Bin, J., Ming-Kai, Y.: Fault tolerant control with on-line control allocation for flexible satellite attitude control system. In: 2nd International Conference on Intelligent Control and Information Processing, pp. 42–46 (2011)Google Scholar
  22. 22.
    Johansen, T., Fossen, T.I.: Control allocation - a survey. Automatica 49, 1087–1103 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Utkin, V., Guldner, J., Shi, J.: Sliding Mode control in Electromechanical Systems. Taylor and Francis, Abingdon (1999)Google Scholar
  24. 24.
    Edwards, C., Spurgeon, S.K.: Sliding Mode control: Theory and Applications. Taylor and Francis, London (1998)zbMATHGoogle Scholar
  25. 25.
    Shtessel, Y., Buffington, J., Banda, S.: Tailless aircraft flight control using multiple time scale re-configurable sliding modes. IEEE Trans. Control Syst. Technol. 10, 288–296 (2002)CrossRefGoogle Scholar
  26. 26.
    Shin, D., Moon, G., Kim, Y.: Design of reconfigurable flight control system using adaptive sliding mode control: actuator fault. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 219, 321–328 (2005)CrossRefGoogle Scholar
  27. 27.
    Corradini, M.L., Orlando, G., Parlangeli, G.: A fault tolerant sliding mode controller for accommodating actuator failures. In: Proceedings of the 44th IEEE Conference on Decision and Control, (2005)Google Scholar
  28. 28.
    Ito, D., Georgie, J., Vasalek, J., Ward, D.T.: Re-entry vehicle flight controls design guidelines: dynamic inversion. Technical Report 210771, NASA/TP, NASA, (2002)Google Scholar
  29. 29.
    Joosten, D., van den Boom, T., Lombaerts, T.: Fault-tolerant control using dynamic inversion and model-predictive control applied to an aerospace benchmark. In: Proceedings of the 17th World Congress IFAC, Seoul, pp. 12030–12035 (2008)Google Scholar
  30. 30.
    Bo\(\check{s}\)kovi\(\acute{c}\), J.D., Mehra, R.K.: A multiple model-based reconfigurable flight control system design. In: Proceedings of the 37th IEEE Conference on Decision and Control, pp. 4503–4508. Tampa, Florida (1998)Google Scholar
  31. 31.
    Narendra, K.S., Driollet, O.A., Feiler, M., George, K.: Adaptive control using multiple models, switching and tuning. Int. J. Adapt. Control Signal Process. 17, 87–102 (2003)CrossRefzbMATHGoogle Scholar
  32. 32.
    Bo\(\check{s}\)kovi\(\acute{c}\), J.D., Mehra, R.K.: Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. In: Proceedings of the American Control Conference, pp. 1920–1924. San Diego, California (1999)Google Scholar
  33. 33.
    Aravena, J., Zhou, K., Li, X., Chowdhury, F.: Fault tolerant safe flight controller bank. In: Proceedings of the IFAC Symposium SAFEPROCESS, pp. 807–812. Beijing (2006)Google Scholar
  34. 34.
    Kanev, S., Verhaegen, M.: A bank of reconfigurable LQG controllers for linear systems subjected to failures. In: Proceedings of the 39th IEEE Conference on Decision and Control, pp. 3684–3689. Sydney, Australia (2000)Google Scholar
  35. 35.
    Zhang, Y., Jiang, J.: Integrated Active Fault-Tolerant Control using IMM approach. IEEE Trans. Aerosp. Electron. Syst. 37(4), 1221–1235 (2001)CrossRefGoogle Scholar
  36. 36.
    Leith, D.J., Leithead, W.E.: Survey of gain-scheduling analysis and design. international journal of control. Int. J. Control 73(11), 1001–1025 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Marcos, A., Balas, G.J.: Development of linear-parameter-varying models for aircraft. AIAA J. Guid. Control Dyn. 27(2), 218–228 (2004)CrossRefGoogle Scholar
  38. 38.
    Patton, R.J., Klinkhieo, S.: LPV fault estimation and FTC of a two link manipulator. In: Proceedings of the American control Conference, pp. 4647–4652. Baltimore, MD (2010)Google Scholar
  39. 39.
    Marcos, A., Veenman, J., Scherer, C., Zaiacomo, G., Mostaza, D., Kerr, M., Koroglu, H., Bennani, S.: Application of LPV modeling, design and analysis methods to a re-entry vehicle. In: AIAA GNC/AFM/MST/ASC/ASE Conference, pp. 1–18 (2010)Google Scholar
  40. 40.
    Theilliol, D., Aberkane, S., Sauter, D.: Fault tolerant control design for polytopic LPV systems. Int. J. Appl. Math. Comput. Sci. 17(1), 27–37 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Montes, S., Puig, V., Witczak, M., Dziekan, L.: Fault tolerant strategy for actuator faults using LPV techniques: application to a two degree of freedom helicopter. J. Appl. Math. Comput. Sci. 22(1), 161–171 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Maciejowski, J.M., Jones, C.N.: MPC fault-tolerant flight control case study: Flight 1862. In: IFAC Symposium SAFEPROCESS, pp. 121–126. Washington DC (2003)Google Scholar
  44. 44.
    Joosten, D.A., Maciejowski, J.M.: MPC design for fault-tolerant flight control purposes based upon an existing output feedback controller. In: Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 253–258. Barcelona, Spain (2009)Google Scholar
  45. 45.
    Sun, S., Dong, L., An, C., Liu, W.: Fault-tolerant control design for linear systems with input constraints and actuator failures. In: CDC and CCDC Conference, pp. 5278–5283 (2009)Google Scholar
  46. 46.
    Miksch, T., Gambier, A., Badreddin, E.: Real-time implementation of fault-tolerant control using model predictive control. In: 17th IFAC World Congress, pp. 11136–11141. Seoul (2008)Google Scholar
  47. 47.
    Yetendji, A., Seron, M., Dona, J.: Robust MPC multicontroller design for actuator fault tolerance of constrained systems. In: 18th IFAC World Congress, pp. 4678–4683. Milano (2011)Google Scholar
  48. 48.
    Marcos, A., Balas, G.J.: A robust integrated controller/diagnosis aircraft application. Int. J. Robust Nonlinear Control 15, 531–551 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Wei, X., Verhaegen, M.: LMI solutions to the mixed \(H2/{\cal H}_{\infty }\) fault detection observer design for linear parameter-varying systems. Int. J. Adapt. Control Signal Process. 25(2), 114–136 (2011)Google Scholar
  50. 50.
    Yang, Z., Stoustrup, J.: Robust reconfigurable control for parametric and additive faults with FDI uncertainties. In: Decision and Control 2000. Proceedings of the 39th IEEE Conference, pp. 4132–4137 (2000)Google Scholar
  51. 51.
    Härkegård, O.: Backstepping and control allocation with applications to flight control, PhD thesis, Division of Automatic Control, Department of Electrical Engineering Linköping, University, Sweden (2003)Google Scholar
  52. 52.
    Patton, R.J.: Fault tolerant control systems: the 1997 situation. In: Proceedings of the IFAC symposium SAFEPROCESS’97, pp. 1033–1054 (1997)Google Scholar
  53. 53.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control, 2nd edn. Springer, Berlin (2006)Google Scholar
  54. 54.
    Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault tolerant Control systems, design and practical applications. Springer, London (2009)Google Scholar
  55. 55.
    Isermann, R.: Fault diagnosis Applications: Model Based condition monitoring: Actuators, drives, machinery, plants, sensors and fault tolerant systems. Springer, Berlin (2011)Google Scholar
  56. 56.
    Patton, R.J., Frank, P.M., Clark, R.N.: Fault Diagnosis in Dynamic Systems: Theory and Application. Prentice Hall, New York (1989)Google Scholar
  57. 57.
    Chen, J., Patton, R.: Robust model-based fault diagnosis for dynamical systems. Kluwer Academic Publishers, Berlin (1999)Google Scholar
  58. 58.
    Noura, H., Sauter, D., Hamelin, F., Theilliol, D.: Fault-tolerant control in dynamic systems: application to a winding machine. IEEE Control Syst. Mag. 20(1), 33–49 (2000)CrossRefGoogle Scholar
  59. 59.
    Tao, G., Joshi, S.M., Ma, X.: Adaptive state feedback and tracking control of systems with actuator failures. IEEE Trans. Autom. Control 46(1), 78–95 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Zhang, Y., Jiang, J.: Fault tolerant control system design with explicit consideration of performance degradation. IEEE Trans. Aerosp. Electron. Syst. 39(3), 838–848 (2003)CrossRefGoogle Scholar
  61. 61.
    Jiang, J., Zhang, Y.: Accepting performance degradation in fault-tolerant control system design. IEEE Trans. Control Syst. Technol. 14(2), 284–292 (2006)CrossRefGoogle Scholar
  62. 62.
    Wu, N., Zhang, Y., Zhou, K.: Detection, estimation, and accommodation of loss of control effectiveness. Int. J. Adapt. Control Signal Process. 14(7), 775–795 (2000)CrossRefzbMATHGoogle Scholar
  63. 63.
    Jiang, J.: Fault-tolerant control systems - an introductory overview. Autom. SINCA 31(1), 161–174 (2005)Google Scholar
  64. 64.
    Edwards, C., Lombaerts, T., Smaili, H.: Fault Tolerant Flight Control: A Benchmark Challenge, vol. 399, Springer, Heidelberg (2010)Google Scholar
  65. 65.
    Jiang, J., Yu, X.: Fault tolerant control systems: a comparative study between active and passive approaches. Annu. Rev. Control 36(1), 60–72 (2012)CrossRefGoogle Scholar
  66. 66.
    Alwi, H., Edwards, C.: Fault tolerant control of a civil aircraft using a sliding mode based scheme. 44th IEEE Conference on Decision and Control. and the European Control Conference, pp. 1011–1016. Seville, Spain (2005)Google Scholar
  67. 67.
    Zhang, Y., Jiang, J.: Issues on integration of fault diagnosis and reconfigurable control in active fault-tolerant control systems. In: Proceedings of the IFAC Symposium SAFEPROCESS, pp. 1437–1448. Beijing, China (2006)Google Scholar
  68. 68.
    Durham, W.C.: Constrained control allocation. J. Guid. Control Dyn. 16(4), 717–725 (1993)CrossRefGoogle Scholar
  69. 69.
    Kim, J., Yang, I., Lee, D.: Accommodation of actuator faults using control allocation with modified daisy chaining. In: 11th International Conference on Control, Automation and Systems, pp. 717–720, Korea (2011)Google Scholar
  70. 70.
    Page, A., Steinberg, M.: Closed-loop comparison of control allocation methods. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, pp. 1760–1770 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mirza Tariq Hamayun
    • 1
    Email author
  • Christopher Edwards
    • 2
  • Halim Alwi
    • 2
  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.College of Engineering Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations