Skip to main content

An Integrated Model of the Biology of the Marine Symbiosis Maristentor dinoferus

Abstract

Maristentor dinoferus (Heterotrichida: Maristentoridae) is a symbiosis comprising a very large ciliate with hundreds of endosymbiotic zooxanthellae (Symbiodinium sp.). Its large size, large amounts of pigment that make it appear black, tendency to cluster, and preferred substratum of the light-colored blades of the seaweed Padina make it visible to the naked eye and observable in the field. Here we review the knowledge of Maristentor behavior and ecology through the lens of biocommunication theory and use analogies with other organisms to develop an integrated framework of understanding as a basis for future experimental and observational research. We are particularly interested in the roles and integration of the three most outstanding features of this symbiosis: the zooxanthellae, the densely pigmented cortical granules, and the complex clustering/dispersal behavior of the cells.

Keywords

  • Crustose Coralline Alga
  • Pigment Granule
  • Cortical Granule
  • Oral Apparatus
  • Motor Home

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-32211-7_17
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-32211-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 17.1
Fig. 17.2
Fig. 17.3
Fig. 17.4
Fig. 17.5

References

  • Ame JM, Halloy J, Rivault C, Detrain C, Deneubourg JL (2006) Collegial decision making based on social amplification leads to optimal group formation. Proc Natl Acad Sci USA 103:5835–5840

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Buonanno F, Saltalamacchia P, Miyake A (2005) Defence function of pigmentocysts in the karyorelictid ciliate Loxodes striatus. Eur J Protistol 41:151–158

    CrossRef  Google Scholar 

  • Buonanno F, Anesi A, Guella G, Kumar S, Bharti D, La Terza A, Quassinti L, Bramucci M, Ortenzi C (2014) Chemical offense by means of toxicysts in the freshwater ciliate, Coleps hirtus. J Eukaryot Microbiol 61:293–304

    CAS  CrossRef  PubMed  Google Scholar 

  • Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonaneau E (2001) Self-organization in biological systems. Princeton University Press, Princeton

    Google Scholar 

  • Chen S-T, Li C-W (1991) Relationships between the movements of chloroplasts and cytoskeletons in diatoms. Bot Mar 34:505–511

    CrossRef  Google Scholar 

  • Demoulin G (1962) Comportement des chenilles de Thaumetopoea pityocampa Schiff. au cours des processions de nymphose. Comptes Rendues de l’Academie des Sciences de Paris 254:733–734

    Google Scholar 

  • Deneubourg J-L, Grégoire J-C, Le Fort E (1990) Kinetics of larval gregarious behavior in the bark beetle Dendroctonus micans (Coleoptera: Scolytidae). J Insect Behav 3:169–182

    CrossRef  Google Scholar 

  • Dziallas C, Allgaier M, Monaghan MT, Grossart H-P (2012) Act together—implications of symbioses in aquatic ciliates. Frontiers Microbiol 3(288):17

    Google Scholar 

  • Emmeche C (2002) Taking the semiotic turn, or how significant philosophy of biology should be done. Nord J Philos 3:155–162

    Google Scholar 

  • Fenchel T, Blackburn N (1999) Motile chemosensory behaviour of phagotrophic protists: mechanisms for and efficiency in congregating at food patches. Protist 150:325–336

    CAS  CrossRef  PubMed  Google Scholar 

  • Fitt WK (1985) Chemosensory responses of the symbiotic dinoflagellates Symbiodinium microadriaticum (Dinophyceae). J Phycol 21:62–67

    CrossRef  Google Scholar 

  • Fitt WK, Trench RK (1983) The relation of diel patterns of cell division to diel pattern of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol 94:421–432

    CrossRef  Google Scholar 

  • Foissner W (1996) Ontogenesis in ciliated protozoa with emphasis on stomatogenesis. In: Hausmann K, Bradbury PC (eds) Ciliates. Cells as organisms. Gustav Fischer Verlag, Stuttgart, pp 95–177

    Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45:111–136

    Google Scholar 

  • Germond A, Nakajima T (this volume) Symbiotic associations in ciliates: ecological and evolutionary perspectives. In: Witzany G, Nowacki M (eds) Biocommunication of ciliates. Springer

    Google Scholar 

  • Gilbert SF (2013) Developmental Biology, 10th edn. Sinauer, Sunderland, USA 719 pp

    Google Scholar 

  • Greenberg PE (2003) Bacterial communication: tiny teamwork. Nature 424:134

    Google Scholar 

  • Hansen G, Daugbjerg N (2009) Symbiodinium natans sp. nov.: a ‘‘free-living’’ dinoflagellate from Tenerife (Northeast-Atlantic Ocean). J Phycol 21:251–263

    CrossRef  Google Scholar 

  • Hartmann C, Özmutlu Ö, Petermeier H, Fried J, Delgado A (2007) Analysis of the flow field induced by the sessile peritrichous ciliate Opercularia asymmetrica. J Biomech 40:137–148

    Google Scholar 

  • Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279

    CrossRef  Google Scholar 

  • Hollingsworth LL, Kinzie RA III, Lewis TD, Krupp DA, Leong JAC (2005) Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24:523

    CrossRef  Google Scholar 

  • Hori M, Tomikawa I, Przybos E, Fuishima M (2006) Comparison of the evolutionary distances among syngens and sibling species of Paramecium. Mol Phylogenet Evol 38:697–704

    CAS  CrossRef  PubMed  Google Scholar 

  • Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology, 2nd edn. Cambridge University Press, Cambridge 562 pp

    CrossRef  Google Scholar 

  • Jones R, Yellowlees D (1997) Regulation and control of intracellular algae (=zooxanthellae) in hard corals. Philos Trans R Soc Lond B 352:457–468

    CrossRef  Google Scholar 

  • Kiørboe T, Visser AW (1999) Predator and prey perception in copepods due to hydromechanical signals. Mar Ecol Prog Ser 179:81–95

    CrossRef  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. Nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 48:1380–1391

    CrossRef  PubMed  Google Scholar 

  • Lenci F, Ghetti F, Song P-S (2001) Photomovement in ciliates. In: Häder D-P, Lebert M (eds) Photomovement. Elsevier Science B.V, Amsterdam, The Netherlands, pp 475–503

    CrossRef  Google Scholar 

  • Lobban CS (2015) A second species of Microtabella (Grammatophoraceae, Bacillariophyta) from Guam. Mar Biodivers Rec 8:e151, 5 pp

    Google Scholar 

  • Lobban CS, Schefter M (1996) An abundance of marine Stentor (Ciliophora: Spirotrichea) epiphytic on Padina (Phaeophyta). Micronesica 29:99–100

    Google Scholar 

  • Lobban CS, Schefter M (2012) Blooms of a benthic ciliate, Maristentor dinoferus (Heterotrichida: Maristentoridae), on coral reefs of Guam, Mariana Islands. Micronesica 43:114–127

    Google Scholar 

  • Lobban CS, Schefter M, Simpson AGB, Pochon X, Pawlowski J, Foissner W (2002) Maristentor dinoferus n. gen., n. sp., a giant heterotrich ciliate (Spirotrichea: Heterotrichida) with zooxanthellae, from coral reefs on Guam, Mariana Islands. Mar Biol 140:411–423+141: 207–208

    Google Scholar 

  • Lobban CS, Modeo L, Verni F, Rosati G (2005) Euplotes uncinatus (Ciliophora, Hypotrichia), a new species with zooxanthellae. Mar Biol 147:1055–1061

    CrossRef  Google Scholar 

  • Lobban CS, Hallam SJ, Mukherjee P, Petrich JW (2007) Photophysics and multifunctionality of hypericin-like pigments in heterotrich ciliates: a phylogenetic perspective. Photochem Photobiol 83:1074–1094

    CAS  CrossRef  PubMed  Google Scholar 

  • Lobban CS, Schefter M, Donaldson TJ (2014) Cluster dynamics in Maristentor dinoferus, a gregarious benthic ciliate with zooxanthellae and a hypericin-like pigment, in relation to biofilm grazing by the fish Ctenochaetus striatus. Symbiosis 63:137–147

    CrossRef  Google Scholar 

  • Lynn DH (2008) The Ciliated Protozoa. Characterization, classification, and guide to the literature. 3rd edn. Springer, New York, 605 pp

    Google Scholar 

  • Madl P, Witzany G (2014) How corals coordinate and organize: an ecosystemic analysis based on biocommunication and fractal properties. In: Witzany G (ed) Biocommunication of animals, Springer Science+Business Media, Dordrecht, Germany, pp 351–382

    Google Scholar 

  • Mansfield M, Turner SL (2002) Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology 148:3762–3764

    Google Scholar 

  • Mayr E (1982) The Growth of Biological Thought: diversity, evolution and inheritance. Belknap Press, Cambridge 974 pp

    Google Scholar 

  • McManus GB, Schoener DM, Haberlandt K (2012) Chloroplast symbionts in a marine ciliate: ecophysiology and the risks and rewards of hosting foreign organelles. Frontiers Microbiol 3:321. doi:10.3389/fmicb.2012.00321

  • Miao W, Simpson AGB, Fu C, Lobban CS (2005) The giant zooxanthellae-bearing ciliate Maristentor dinoferus is closely related to Folliculinidae. J Eukaryot Microbiol 52:11–16

    CrossRef  PubMed  Google Scholar 

  • Miyake A, Harumoto, Iio H (2001) Defense function of pigment granules in Stentor coeruleus. Eur J Protistol 37:77–88

    CrossRef  Google Scholar 

  • Miyake AF, Buonanno P, Saltalamacchia P, Masaki ME, Iio H (2003) Chemical defense by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. Eur J Protistol 39:25–36

    Google Scholar 

  • Mordret S, Romac S, Henry N, Colin S, Carmichael M, Berney C, Audic S, Richter DJ, Pochon X, de Vargas C, Decelle J (2015) The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp). ISME J (in press)

    Google Scholar 

  • Mukherjee P, Fulton DB, Halder M, Han X, Armstrong DW, Petrich J, Lobban CS (2006) Maristentorin, a novel pigment from the positively phototactic marine ciliate Maristentor dinoferus, is structurally related to hypericin and stentorin. J Phys Chem B 110:6359–6364

    CAS  CrossRef  PubMed  Google Scholar 

  • Mulisch M, Patterson DJ (1988) Stomatogenesis during cell division in the loricate ciliate Eufolliculina uhligi: a scanning electron microscope study. Eur J Protistol 23:193–201

    CAS  CrossRef  PubMed  Google Scholar 

  • Negri AP, Webster NS, Hill RT, Heyward AJ (2001) Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar Ecol Prog Ser 223:121–131

    CrossRef  Google Scholar 

  • Nowack ECM, Melkonian M (2010) Endosymbiotic associations within protists. Philos Trans R Soc Lond B Biol Sci 365:699–712

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Parkinson JE, Coffroth MA, LaJeunesse TC (2015) New species of Clade B Symbiodinium (Dinophyceae) from the greater Caribbean belong to different functional guilds: S. aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. pseudominutum sp. nov. J Phycol 51:850–858

    CrossRef  PubMed  Google Scholar 

  • Pochon X, Putnam HM, Gates RD (2014) Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ 2:e394. https://dx.doi.org/10.7717/peerj.394

    Google Scholar 

  • Podestà A, Marangoni R, Villani C, Colombetti G (1994) A rhodopsin-like molecule on the plasma membrane of Fabrea salina. J Eukaryot Microbiol 41:565–569

    CrossRef  Google Scholar 

  • Schlichter D, Meier U, Fricke HW (1994) Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99:124–131

    CrossRef  Google Scholar 

  • Sobierajska K, Fabczak H, Fabczak S (2006) Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms. J Photochem Photobiol B Biol 83:163–171

    CAS  CrossRef  Google Scholar 

  • Sommaruga R, Whitehead K, Shick JM, Lobban CS (2006) Mycosporine-like amino acids in the zooxanthella-ciliate symbiosis Maristentor dinoferus. Protist 157:185–191

    CAS  CrossRef  PubMed  Google Scholar 

  • Song P-S, Kim I-H, Rhee JS, Huh J, Florell S, Faure B, Lee KW, Kahsai T, Tamai N, Yamazaki T, Yamazaki I (1991) Photoreception and photomovements in Stentor coeruleus. In: Lenci F, Ghetti F, Colombett G, Häder D-P, Song P-S (eds) Biophysics of photoreceptors and photomovements in microorganisms. Plenum Press, New York, pp 267–279

    CrossRef  Google Scholar 

  • Stanley GD, Swart PK (1995) Evolution of the coral-zooxanthella symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179–199

    Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    CrossRef  Google Scholar 

  • Stoecker DK, Silver MW, Michaels AE, Davis LH (1988) Enslavement of algal chloroplasts by four Strombidium spp (Ciliophora, Oligotrichida). Mar Microb Food Webs 3:79–100

    Google Scholar 

  • Stoecker DK, Johnson MD, de Vargas C, Not F (2009) Acquired phototrophy in aquatic protists. Aquat Microb Ecol 57:279–310

    CrossRef  Google Scholar 

  • Summerer M, Sonntag B, Sommaruga R (2007) An experimental test of the symbiosis specificity between the ciliate Paramecium bursaria and strains of the unicellular green alga Chlorella. Environ Microbiol 9:2117–2122

    CAS  CrossRef  PubMed  Google Scholar 

  • Summerer M, Sonntag B, Sommaruga R (2008) Ciliate-symbiont specificity of freshwater endosymbiotic Chlorella (Trebouxiophyceae, Chlorophyta). J Phycol 44:77–84

    CAS  CrossRef  PubMed  Google Scholar 

  • Sumpter DJT, Pratt SC (2009) Quorum responses and consensus decision making. Philos Trans R Soc B 364:743–753

    CrossRef  Google Scholar 

  • Titlyanov EA, Titlyanova TV, Leletkin VA, Tsukahara J, van Woesik R, Yamazato K (1996) Degradation of zooxanthellae and regulation of their density in hermatyopic corals. Mar Ecol Prog Ser 139:167–178

    CrossRef  Google Scholar 

  • Visser AW (2001) Hydromechanical signals in the plankton. Mar Ecol Prog Ser 222:1–24

    CrossRef  Google Scholar 

  • Wahl M (2008) Ecological lever and interface ecology: epibiosis modulates the interface between host and environment. Biofouling 24:427–438

    CrossRef  PubMed  Google Scholar 

  • Ward AJW, Sumpter DJT, Couzin ID, Hart PJB, Krause J (2008) Quorum decision-making facilitates information transfer in fish shoals. Proc Natl Acad Sci USA 105:6948–6953

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wilkerson FP, Grunseich G (1990) Formation of blooms by the symbiotic ciliate Mesodinium rubrum: the significance of nitrogen uptake. J Plankton Res 12:973–989

    CrossRef  Google Scholar 

  • Witzany G (2008) Biocommunication of unicellular and multicellular organisms. The biosemiotic categorization of rule-governed sign-mediated interactions within and between bacteria, fungi and plants. TripleC (Cognition, Communication, Co-operation) 6:24–53

    Google Scholar 

  • Wölfl S, Geller W (2002) Chlorella-bearing ciliates dominate in an oligotrophic North Patagonian lake (Lake Pirehueico, Chile): abundance, biomass and symbiotic photosynthesis. Freshw Biol 47:231–242

    CrossRef  Google Scholar 

  • Wood DC (1989) Localization of mechanoreceptors in the protozoan, Stentor coeruleus. J Comp Physiol A 165:229–235

    CAS  CrossRef  PubMed  Google Scholar 

  • Wood DC (2001) Electrophysiology and light responses in Stentor and Blepharisma. In: Häder D-P, Lebert M (eds) Photomovement. Elsevier Science BV, Amsterdam, pp 505–518

    CrossRef  Google Scholar 

  • Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol 8:1985–1993

    CAS  CrossRef  PubMed  Google Scholar 

  • Yamashita H, Kobiyama A, Koike K (2009) Do uric acid deposits in zooxanthellae function as eye-spots? PLoS One 4(7):e6303. doi:10.1371/journal.pone.0006303

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Yamashita H, Suzuki G, Kai S, Hayashibara T, Koike K (2014) Establishment of coral–algal symbiosis requires attraction and selection. PLoS One 9(5):e97003. doi:10.1371/journal.pone.0097003

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zagata P, Greczek-Stachura M, Tarcz S, Rautian M (2015) Molecular identification of Paramecium bursaria syngens and studies on geographic distribution using mitochondrial cytochrome c oxidase subunit I (COI). Folia Biol (Krakow) 63:77–83

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

Many people have contributed to discussions of Maristentor over two decades. Here we wish to thank G. Curt Fiedler for reviewing a draft manuscript and Toshiyuki Nakajima for sharing a draft of his chapter for this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Lobban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lobban, C.S., Schefter, M. (2016). An Integrated Model of the Biology of the Marine Symbiosis Maristentor dinoferus . In: Witzany, G., Nowacki, M. (eds) Biocommunication of Ciliates. Springer, Cham. https://doi.org/10.1007/978-3-319-32211-7_17

Download citation