Skip to main content

Paramecium as a Model Organism for Studies on Primary and Secondary Endosymbioses

  • Chapter
  • First Online:
Biocommunication of Ciliates

Abstract

Endosymbiosis is a driving force in eukaryotic cell evolution. This phenomenon has occurred several times and has yielded a wide diversity of eukaryotic cells. Despite the importance of endosymbiosis, however, molecular mechanisms for its induction between different microorganisms are not so well known. To elucidate these mechanisms, experiments for synchronous induction of the endosymbiosis by symbionts isolated from the symbiont-bearing host cells and the symbiont-free host cells are indispensable. Also, the infection process needs to be easily observable under a microscope. In many endosymbiotic communities, however, both the endosymbionts and the symbiont-free host cells have already lost the ability to survive and grow independently. Consequently, re-induction of the endosymbiosis was difficult. We have developed optimum experimental conditions for the induction of primary and secondary endosymbiosis using the ciliate Paramecium and their endosymbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abamo F, Dohra H, Fujishima M (2008) Fate of the 63-kDa periplasmic protein of the infectious form of the endonuclear symbiotic bacterium Holospora obtusa during the infection process. FEMS Microbiol Lett 280:21–27

    Article  CAS  PubMed  Google Scholar 

  • Albers D, Wiessner W (1985) Nitrogen nutrition of endosymbiotic Chlorella spec. Endocytobiol Cell Res 2:55–64

    Google Scholar 

  • Amann R, Springer N, Ludwig W, Görtz H-D, Schleifer K-H (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351:161–164

    Article  CAS  PubMed  Google Scholar 

  • Aury JM, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Ségurens B, Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc I, Bouhouche K, Câmara F, Duharcourt S, Guigo R, Gogendeau D, Michael Katinka M, Keller AM, Kissmehl R, Klotz C, Koll F, Mouël AL, Lepère G, Malinsky S, Nowacki M, Nowak JK, Plattner H, Poulain J, Ruiz F, Serrano V, Zagulski M, Dessen P, Bétermier M, Weissenbach J, Scarpelli C, Schächter V, Sperling L, Meyer E, Cohen J, Wincker P (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Duncan G, Agarkove I, Borodovsky M, Gumon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Ettan JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosynthesis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boscaro V, Felletti M, Vannini C, Ackerman MS, Chain PSG, Malfatti S, Vergez LM, Shin M, Doak TG, Lynch M, Petroni G (2013) Polynucleobacter necessarius, a model for genome reduction in both free-living and symbiotic bacteria. Proc Natl Acad Sci USA 110:18590–18595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JA, Nielsen PJ (1974) Transfer of photosynthetically produced carbohydrate from endosymbiotic Chlorellae to Paramecium bursaria. J Protozool 21(4):569–570

    Article  CAS  PubMed  Google Scholar 

  • Dohra H, Fujishima M (1999) Cell structure of the infectious form of Holospora, an endonuclear symbiotic bacterium of the ciliate Paramecium. Zool Sci 16:93–98

    Article  Google Scholar 

  • Dohra H, Suzuki H, Suzuki T, Tanaka K, Fujishima M (2013) Draft genome sequence of Holospora undulata strain HU1, a micronucleus-specific symbiont of the ciliate Paramecium caudatum. Genome Announc 1:e00664–13

    Google Scholar 

  • Dohra H, Tanaka K, Suzuki T, Fujishima M, Suzuki H (2014) Draft genome sequences of three Holospora species (Holospora obtusa, Holospora undulata, and Holospora elegans), endonuclear symbiotic bacteria of the ciliate Paramecium caudatum. FEMS Microbiol Lett Genome Announc 359:16–18

    Article  CAS  Google Scholar 

  • Dryl S (1959) Antigenic transformation in Paramecium aurelia after homologous antiserum treatment during autogamy and conjugation. J Protozool 6(Suppl):25

    Google Scholar 

  • Ehrsam E, Görtz H-D (1999) Surface proteins of the Gram-negative bacterium Holospora obtusa bind to macronuclear proteins of its host Paramecium caudatum. Europ J Protistol 35:304–308

    Article  Google Scholar 

  • Fok AK, Allen RD (1988) The lysosome system. In: Görtz HD (ed) Paramecium. Springer, Berlin, pp 301–324

    Google Scholar 

  • Fokin SI, Görtz HD (2009) Diversity of Holospora bacteria in Paramecium and their characterization. In: Fujishima M (ed) Endosymbionts in Paramecium, microbiology monographs, vol 12. Springer, pp 161–199

    Google Scholar 

  • Fokin SI, Sabaneyeva EV (1997) Release of endonucleobiotic bacteria Holospora bacillata and Holospora curvata from the macronucleus of their host cells Paramecium woodruffi and Paramecium calkinsi. Endocyt Cell Res 12:49–55

    Google Scholar 

  • Fokin SI, Brigge T, Brenner J, Görtz HD (1996) Holospora species infected the nuclei of Paramecium appear to belong into two groups of bacteria. Europ J Protistol 32:19–24

    Article  Google Scholar 

  • Fokin SI, Przybos E, Chivilev SM, Beier CL, Horn M, Skotarczak B, Wodecka B, Fujishima M (2004) Morphological and molecular investigations of Paramecium schewiakoffi sp nov (Ciliophora, Oligohymenophorea) and current status of distribution and taxonomy of Paramecium spp. Europ J Protistol 40:225–243

    Article  Google Scholar 

  • Fujishima M (1986) Further study of the infectivity of Holospora obtusa, a macronucleus specific bacterium of the ciliate Paramecium caudatum. Acta Protozool 25:345–350

    Google Scholar 

  • Fujishima M (2009) Infection and maintenance of Holospora species in Paramecium caudatum. In: Fujishima M (ed) Endosymbionts in Paramecium, microbiology monographs, vol 12. Springer, pp 201–225

    Google Scholar 

  • Fujishima M, Görtz HD (1983) Infection of macronuclear anlagen of Paramecium caudatum with the macronucleus-specific symbiont Holospora obtusa. J Cell Sci 64:137–146

    CAS  PubMed  Google Scholar 

  • Fujishima M, Fujita M (1985) Infection and maintenance of Holospora obtusa, a macronucleus-specific bacterium of the ciliate Paramecium caudatum. J Cell Sci 76:179–187

    CAS  PubMed  Google Scholar 

  • Fujishima M, Hoshide K (1988) Light and electron microscopic observations of Holospora obtusa: A macronucleus-specific bacterium of the ciliate Paramecium caudatum. Zool Sci 5:791–799

    Google Scholar 

  • Fujishima M, Kawai M (1997) Acidification in digestive vacuoles is an early event required for Holospora infection of Paramecium nucleus. In: Achenk HEA, Herrmann RG, Jeon KW, Müller NE, Schwemmler W (eds) Eukaryotism and symbiosis. Springer, Berlin, pp 367–370

    Chapter  Google Scholar 

  • Fujishima M, Mizobe Y (1988) Host genes controlling maintenance of a macronucleus-specific symbiont Holospora obtusa of Paramecium caudatum. Zool Sci 5:1272

    Google Scholar 

  • Fujishima M, Kawai M (2004) Endonuclear symbiotic bacteria Holospora species distinguish the host nuclear envelopes. Endocyt Cell Res 15:71–76

    Google Scholar 

  • Fujishima M, Kodama Y (2012) Endosymbionts in Paramecium. Eur J Protistol 48:124–137

    Article  PubMed  Google Scholar 

  • Fujishima M, Nagahara K, Kojima Y (1990a) Changes in morphology, buoyant density and protein composition in differentiation from the reproductive short form to the infectious long form of Holospora obtusa, a macronucleus-specific symbiont of the ciliate Paramecium caudatum. Zool Sci 7:849–860

    CAS  Google Scholar 

  • Fujishima M, Sawabe H, Iwatsuki K (1990b) Scanning electron microscopic observations of differentiation from the reproductive short form to the infectious long form of Holospora obtusa. J Protozool 37:123–128

    Article  Google Scholar 

  • Fujishima M, Nagahara K, Kojima Y, Sayama Y (1991) Sensitivity of the infectious long form of the macronuclear endosymbiont Holospora obtusa of the ciliate Paramecium caudatum against chemical and physical factors. Europ J Protistol 27:119–126

    Article  CAS  Google Scholar 

  • Fujishima M, Kawai M, Yamamoto R (2005) Paramecium caudatum acquires heat-shock resistance in ciliary movement by infection with the endonuclear symbiotic bacterium Holospora obtusa. FEMS Microbiol Lett 243:101–105

    Article  CAS  PubMed  Google Scholar 

  • Fujishima M, Iwatani K, Nakamura Y, Kodama Y (2007) Infection of Holospora is controlled by 89-lDa proplasmic proteins and the host actin. Protistology 5(Abst):31

    Google Scholar 

  • Gibson I, Bedingfield G, Horne RW, Bird B (1986) Electron microscope study of the structure of Holospora caryophila. Micron Microsc Acta 17:247–257

    Article  Google Scholar 

  • Gomori G (1952) Microscopic Histochemistry: Principles and Practice. University of Chicago Press, Chicago

    Google Scholar 

  • Görtz HD (1980) Nucleus-specific symbionts in Paramecium caudatum. In: Schwemmler W, Schenk HEA (eds) Endocytobiology, endocytobiosis and cell biology I. Walter de Gruyter & Co, Berlin, pp 381–392

    Google Scholar 

  • Görtz HD (1982) Infections of Paramecium bursaria with bacteria and yeasts. J Cell Sci 58:445–453

    PubMed  Google Scholar 

  • Görtz HD (1983) Endonuclear symbionts in ciliates. Intern Rev Cytol 14:145–176

    Google Scholar 

  • Görtz HD, Dieckmann J (1980) Life cycle and infectivity of Holospora elegans (Hafkine), a micronucleus-specific symbiont of Paramecium caudatum (Ehrenberg). Protistologica 16:591–603

    Google Scholar 

  • Görtz HD, Wiemann M (1989) Route of infection of the bacteria Holospora elegans and Holospora obtusa into the nuclei of Paramecium caudatum. Eur J Protistol 24:101–109

    Article  PubMed  Google Scholar 

  • Görtz HD, Ahlers N, Robenek H (1989) Ultrastructure of the infectious and reproductive forms of Holospora obtusa, a bacterium infecting the macronucleus of Paramecium caudatum. J Gen Microbiol 135:3079–3085

    Google Scholar 

  • Görtz HD, Benting J, Ansorge I, Freiburg M (1992) Cell surface proteins of the infectious form of the symbiotic bacterium Holospora obtusa. Symbiosis 14:391–397

    Google Scholar 

  • Gromov BV, Ossipov DV (1981) Holospora (ex Hafkine 1980) nom. rev., a genus of bacteria inhabiting the nuclei of paramecia. Int J Syst Bacteriol 31:348–352

    Article  Google Scholar 

  • Gu F, Chen L, Ni B, Zhang X (2002) A comparative study on the electron microscopic enzymo-cytochemistry of Paramecium bursaria from light and dark cultures. Eur J Protistol 38(3):267–278

    Article  Google Scholar 

  • Hori M, Fujishima M (2003) The endosymbiotic bacterium Holospora obtusa enhances heat-shock gene expression of the host Paramecium caudatum. J Euk Microbiol 50:293–298

    Article  CAS  PubMed  Google Scholar 

  • Hori M, Tomikawa I, Przybos E, Fujishima M (2006) Comparison of the evolutionary distances among syngens and sibling species of Paramecium. Mol Phyl Evol 38:697–704

    Article  CAS  Google Scholar 

  • Hori M, Fujii K, Fujishima M (2008) Micronucleus-specific bacterium Holospora elegans irreversibly enhances stress gene expression of the host Paramecium caudatum. Euk Microbiol 55:515–521

    Article  CAS  Google Scholar 

  • Hörtnagl PH, Sommaruga R (2007) Photo-oxidative stress in symbiotic and aposymbiotic strains of the ciliate Paramecium bursaria. Photochem Photobiol Sci Official J Eur Photochem Assoc Eur Soc Photobiol 6(8):842–847

    Google Scholar 

  • Hosoya H, Kimura K, Matsuda S, Kitaura M, Takahashi T (1995) Symbiotic alga-free strains of the green Paramecium bursaria produced by herbicide paraquat. Zool Sci 12:807–810

    Article  CAS  Google Scholar 

  • Iwatani K, Dohra H, Lang BF, Burger G, Hori M, Fujishima M (2005) Translocation of an 89-kDa periplasmic protein is associated with Holospora infection. Biochem Biophys Res Comm 337:1198–1205

    Article  CAS  PubMed  Google Scholar 

  • Jennings HS (1938) Sex reaction types and their interrelations in Paramecium bursaria I and II. Clones collected from natural habitats. Proc Natl Acad Sci USA 24:112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadono T, Kawano T, Hosoya H, Kosaka T (2004) Flow cytometric studies of the host-regulated cell cycle in algae symbiotic with green paramecium. Protoplasma 223:133–141

    Article  CAS  PubMed  Google Scholar 

  • Kamako S-I, Imamura N (2006) Effect of Japanese Paramecium bursaria extract on photosynthetic carbon fixation of symbiotic algae. J Euk Microbiol 53:136–141

    Article  PubMed  Google Scholar 

  • Karakashian SJ (1963) Growth of Paramecium bursaria as influenced by the presence of algal symbionts. Physiol Zool 36:52–68

    Article  Google Scholar 

  • Karakashian SJ (1975) Symbiosis in Paramecium bursaria. Symp Soc Exp Biol 29:145–173

    Google Scholar 

  • Kato Y, Imamura N (2009) Metabolic control between the symbiotic Chlorella and the host Paramecium. In: Fujishima M (ed) Endosymbionts in Paramecium, microbiology monographs, vol 12. Springer, pp 57–82

    Google Scholar 

  • Kawakami H, Kawakami N (1978) Behavior of a virus in a symbiotic system, Paramecium bursaria—zoochlorella. J Protozool 25:217–225

    Article  Google Scholar 

  • Kinoshita H, Oomori S, Nozaki M, Miwa I (2009) Timing of establishing symbiosis during the re-infection of Chlorella sp in Paramecium bursaria. Jpn J Protozool 42:88–89

    Google Scholar 

  • Kodama Y (2013) Localization of attachment area of the symbiotic Chlorella variabilis of the ciliate Paramecium bursaria during the algal removal and reinfection. Symbiosis 60(1):25–36

    Article  Google Scholar 

  • Kodama Y, Fujishima M (2005) Symbiotic Chlorella sp. of the ciliate Paramecium bursaria do not prevent acidification and lysosomal fusion of host digestive vacuoles during infection. Protoplasma 225:191–203

    Article  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2007) Infectivity of Chlorella species for the ciliate Paramecium bursaria is not based on sugar residues of their cell wall components, but based on their ability to localize beneath the host cell membrane after escaping from the host digestive vacuole in the early infection process. Protoplasma 231:55–63

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2008) Cycloheximide induces synchronous swelling of perialgal vacuoles enclosing symbiotic Chlorella vulgaris and digestion of the algae in the ciliate Paramecium bursaria. Protist 159:483–494

    Article  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2009a) Timing of perialgal vacuole membrane differentiation from digestive vacuole membrane in infection of symbiotic algae Chlorella vulgaris of the ciliate Paramecium bursaria. Protist 160:65–74

    Article  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2009b) Localization of perialgal vacuoles beneath the host cell surface is not a prerequisite phenomenon for protection from the host’s lysosomal fusion in the ciliate Parameium bursaria. Protist 160:319–329

    Article  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2009c) Infection of Paramecium bursaria with symbiotic Chlorella species. In: Fujishima M (ed) Endosymbionts in Paramecium, microbiology monographs, vol 12. Springer, pp 31–55

    Google Scholar 

  • Kodama Y, Fujishima M (2010a) Secondary symbiosis between Paramecium and Chlorella cells. Int Rev Cell Mol Biol 279:33–77

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2010b) Elucidation of establishment of secondary endosymbiosis as a driving force for biodiversity. In: Miyamoto A and Fujishima M (eds) Proceedings of infrastructure and environmental management symposium in Yamaguchi 2010, research center for environmental safety (RCES). Yamaguchi University, pp 1–39

    Google Scholar 

  • Kodama Y, Fujishima M (2011) Endosymbiosis of Chlorella species to the ciliate Paramecium bursaria alters the distribution of the host's trichocysts beneath the host cell cortex. Protoplasma 248:325–337

    Google Scholar 

  • Kodama Y, Fujishima M (2012a) Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host’s nutritional conditions during early infection process. Environ Microbiol 14(10):2800–2811

    Article  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2012b) Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria. Protist 163(4):658–670

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2013) Synchronous induction of detachment and reattachment of symbiotic Chlorella spp from the cell cortex of the host Paramecium bursaria. Protist 164(5):660–672

    Article  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2014) Symbiotic Chlorella variabilis incubated under constant dark condition for 24 hours loses ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria. FEMS Microbiol Ecol 90:946–955

    Google Scholar 

  • Kodama Y, Nakahara M, Fujishima M (2007) Symbiotic alga Chlorella vulgaris of the ciliate Paramecium bursaria shows temporary resistance to host lysosomal enzymes during the early infection process. Protoplasma 230:61–67

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Inouye I, Fujishima M (2011) Symbiotic Chlorella vulgaris of the ciliate Paramecium bursaria plays an important role in maintaining perialgal vacuole membrane functions. Protist 162(2):288–303

    Article  PubMed  Google Scholar 

  • KodamaY Suzuki H, Dohra H, Sugii M, Kitazume T, Yamaguchi K, Shigenobu S, Fujishima M (2014) Comparison of gene expression of Paramecium bursaria with and without Chlorella variabilis symbionts. BMC Genom 15:183

    Article  Google Scholar 

  • Kreutz M, Stoeck T, Foissner W (2012) Morphological and molecular characterization of Paramecium (Viridoparamecium nov. subgen.) chlorelligerum Kahl 1935 (Ciliophora). J Eukaryot Microbiol 59:548–563

    Article  PubMed  Google Scholar 

  • Kuchitsu K, Oh-hama T, Tsuzuki M, Miyachi S (1987) Detection and characterization of acidic compartments (vacuoles) in Chlorella vulgaris 11 h cells by 31P-in vivo NMR spectroscopy and cytochemical techniques. Arc Microbiol 148(2):83–87

    Article  CAS  Google Scholar 

  • Lang BF, Brinkmann H, Koski LB, Fujishima M, Görtz HD, Burger G (2005) On the origin of mitochondria and Rickettsia-related eukaryotic endosymbionts. Jpn J Protozool 38:171–183

    Google Scholar 

  • Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, Mattei P-J, Regnault B, Nahori M-A, Cabannes D, Gautreau A, Ait-Si-Ali S, Dessen A, Cossart P, Bierne H (2011) A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 331:1319–1321

    Article  CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    CAS  PubMed  Google Scholar 

  • McGrath CL, Gout JF, Doak TG, Yanagi A, Lynch M (2014) Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence. Genetics 114

    Google Scholar 

  • Miwa I (2009) Regulation of circadian rhythms of Paramecium bursaria by symbiotic Chlorella species. In: Fujishima M (ed) Endosymbionts in Paramecium, microbiology monographs, vol 12. Springer, pp 83–110

    Google Scholar 

  • Nakamura Y, Aki M, Aikawa T, Hori M, Fujishima M (2004) Differences in gene expression of the ciliate Paramecium caudatum caused by endonuclear symbiosis with Holospora obtusa, revealed using differential display reverse transcribed PCR. FEMS Microbiol Lett 240:209–213

    Article  CAS  PubMed  Google Scholar 

  • Ossipov DV (1973) Specific infectious specificity of the omega-particles, micronuclear symbiotic bacteria of Paramecium caudatum. Cytology (Saint-Petersburg) 15:211–217

    Google Scholar 

  • Ossipov DV, Skoblo II, Rautian MS (1975) Iota-particles, macronuclear symbiotic bacteria of ciliate Paramecium caudatum clone M-115. Acta Protozool 14:263–280

    Google Scholar 

  • Ossipov DV, Skoblo II, Borschsenius ON, Rautian MS (1980) Holospora acuminata—a new species of symbiotic bacterium from the micronucleus of the ciliate Paramecium bursaria Focke. Cytology (Saint-Petersburg) 22:922–929

    Google Scholar 

  • Pado R (1965) Mutual relation of protozoans and symbiotic algae in Paramaecium bursaria. I. The influence of light on the growth of symbionts. Folia Biol 13(2):173–182

    CAS  Google Scholar 

  • Preer LB (1969) Alpha, an infectious macronuclear symbiont of Paramecium aurelia. J Protozool 16:570–578

    Article  CAS  PubMed  Google Scholar 

  • Reisser W (1976) The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria—symbiosis. I. The nitrogen and the carbon metabolism. Arc Microbiol 107(3):357–360

    Google Scholar 

  • Reisser W (1980) The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosis. III. The influence of different CO2-Concentrations and of glucose on the photosynthetic and respiratory capacity of the symbiotic unit. Arc Microbiol 125(3):291–293

    Google Scholar 

  • Reisser W (1986) Endosymbiotic associations of freshwater protozoa and algae. In: Corliss JO, Patterson DJ (eds) Prog in protistology, vol 1. Biopress Ltd., Bristol, pp 195–214

    Google Scholar 

  • Reisser W, Klein T, Becker B (1988) Studies of phycoviruses I. On the ecology of viruses attacking Chlorellae exsymbiotic from a European strain of Paramecium bursaria. Arch Hydrobiol 111:575–583

    Google Scholar 

  • Sabaneyeva EV, Derlacheva ME, Benken KA, Fokin SI, Vainio S, In Skovorodkin (2009) Actin-based mechanism of Holospora obtusa trafficking in Paramecium caudatum. Protist 160:205–219

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Karakashian S (1959) Dissociation and restoration of endocellular symbiosis in Paramecium bursaria. Anat Rec 134:639

    Google Scholar 

  • Skoblo II, Lebedeva NA (1986) Infection of the nuclear apparatus of Paramecium bursaria (Ciliata) by the symbiotic bacterium Holospora curviuscula. Cytology (Sankt-Petersburg) 28:367–372

    Google Scholar 

  • Smurov AO, Fokin SI (1998) Resistance of Paramecium caudatum infected with endonuclear bacteria Holospora against salinity impact. Proc Zool Inst RAS 276:175–178

    Google Scholar 

  • Summerer M, Sonntag B, Hortnagl P, Sommaruga R (2009) Symbiotic ciliates receive protection against UV damage from their algae: a test with Paramecium bursaria and Chlorella. Protist 160(2):233–243

    Article  PubMed  Google Scholar 

  • Swanson SJ, Bethke PC, Jones RL (1998) Barley aleurone cells contain two types of vacuoles: Characterization of lytic organelles by use of fluorescent probes. Plant Cell Online 10(5):685–698

    Article  CAS  Google Scholar 

  • Takahashi T, Shirai Y, Kosaka T, Hosoya H (2007) Arrest of cytoplasmic streaming induces algal proliferation in green paramecia. PLoS ONE 2(12):e1352

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Murata-Hori M, Kadono T, Yamada T, Kawano T, Kosaka T, Hosoya H (2002) Complete elimination of endosymbiotic algae from Paramecium bursaria and its confirmation by diagnostic PCR. Acta Protozool 41:255–261

    CAS  Google Scholar 

  • Van Etten JL, Burbank DE, Schuster AM, Meints RH (1985) Lytic viruses infecting a Chlorella-like alga. Virology 140(1):135–143

    Article  PubMed  Google Scholar 

  • Veal EA, Toone WM, Jones N, Morgan BA (2002) Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J Biol Chem 277(38):35523–35531

    Article  CAS  PubMed  Google Scholar 

  • Weis DS (1969) Regulation of host and symbiont population size in Paramecium bursaria. Experientia 25(6):664–666

    Article  CAS  PubMed  Google Scholar 

  • Weis DS (1984) The effect of accumulation time of separate cultivation on the frequency of infection of aposymbiotic ciliates by symbiotic algae in Paramecium bursaria. J Protozool 31:14A

    Google Scholar 

  • Wichterman R (1948) The biological effects of X-rays on mating types and conjugation of Paramecium bursaria. Biol Bull 93:201

    Google Scholar 

  • Wiemann M (1989) The release of Holospora obtusa from Paramecium caudatum observed with a new device for extended in vivo microscopy. J Protozool 36:176–179

    Article  Google Scholar 

  • Yamada T, Onimatsu H, Van Etten JL (2006) Chlorella viruses. In: Karl M, Aaron JS (eds) Adv Virus Res, vol 66. Academic Press, pp 293–336

    Google Scholar 

  • Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121(3):687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 26840119 to Y.K., and also by a JSPS KAKENHI Grant Number 26291073 and a MEXT TOKUBETSUKEIHI to M.F. Paramecium strains used in this chapter were provided by the Symbiosis Laboratory, Yamaguchi University, with support in part by the National Bio-Resource Project of the Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuuki Kodama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kodama, Y., Fujishima, M. (2016). Paramecium as a Model Organism for Studies on Primary and Secondary Endosymbioses. In: Witzany, G., Nowacki, M. (eds) Biocommunication of Ciliates. Springer, Cham. https://doi.org/10.1007/978-3-319-32211-7_16

Download citation

Publish with us

Policies and ethics