Introduction to Radiation Biology When Treating Hyperproliferative Benign Diseases

Chapter

Abstract

For decades, a low-dose irradiation with X-rays has clinically been documented to exert a beneficial effect on hyperproliferative disorders like the Dupuytren disease (DD) and Ledderhose disease (LD). By contrast, experimental studies to unravel underlying cellular and molecular mechanisms are still at their early stages. Recent data, however, indicate the involvement of radiation-sensitive target cells like mitotic fibroblasts/myofibroblasts, induction of free radicals to impair proliferative activity of these cells, interference with growth factors and cytokines and a reduction of activated immune cells interacting with the inflammatory and proliferative processes. We here aim at briefly describing mechanisms contributing to a modulation of fibrogenic and inflammatory components upon exposure to ionizing radiation.

Keywords

Low-dose radiation therapy Hyperproliferative diseases Fibroblasts/myofibroblast Cytokines Growth factors Antiproliferative effect Anti-inflammatory effect 

References

  1. Abraham DJ, Eckes B, Rajkumar V, Krieg T (2007) New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep 9(2):136–143PubMedCrossRefGoogle Scholar
  2. Alioto RJ, Rosier RN, Burton RI, Puzas JE (1994) Comparative effects of growth factors on fibroblasts of Dupuytren’s tissue and normal palmar fascia. J Hand Surg Am 19(3):442–452PubMedCrossRefGoogle Scholar
  3. Alman BA, Naber SP, Terek RM et al (1995) Platelet-derived growth factor in fibrous musculoskeletal disorders: a study of pathologic tissue sections and in vitro primary cell cultures. J Orthop Res 13(1):67–77PubMedCrossRefGoogle Scholar
  4. Andrew JG, Andrew SM, Ash A, Turner B (1991) An investigation into the role of inflammatory cells in Dupuytren’s disease. J Hand Surg Br 16(3):267–271PubMedCrossRefGoogle Scholar
  5. Badalamente MA, Sampson SP, Hurst LC et al (1996) The role of transforming growth factor beta in Dupuytren’s disease. J Hand Surg Am 21(2):210–215PubMedCrossRefGoogle Scholar
  6. Bayreuther K, Francz PI, Rodemann HP (1992) Fibroblasts in normal and pathological terminal differentiation, aging, apoptosis and transformation. Arch Gerontol Geriatr 15(Suppl 1):47–74PubMedCrossRefGoogle Scholar
  7. Bayreuther K, Rodemann HP, Francz PI, Maier K (1988a) Differentiation of fibroblast stem cells. J Cell Sci Suppl 10:115–130PubMedCrossRefGoogle Scholar
  8. Bayreuther K, Rodemann HP, Hommel R et al (1988b) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A 85(14):5112–5116PubMedPubMedCentralCrossRefGoogle Scholar
  9. Berndt A, Kosmehl H, Katenkamp D, Tauchmann V (1994) Appearance of the myofibroblastic phenotype in Dupuytren’s disease is associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiology 62(2):55–58PubMedCrossRefGoogle Scholar
  10. Bianchi E, Taurone S, Bardella L et al (2015) Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren’s contracture: a novel target for a possible future therapeutic strategy? Clin Sci (Lond) 129(8):711–720CrossRefGoogle Scholar
  11. Bumann J, Santo-Holtje L, Loffler H, Bamberg M, Rodemann HP (1995) Radiation-induced alterations of the proliferation dynamics of human skin fibroblasts after repeated irradiation in the subtherapeutic dose range. Strahlenther Onkol 171(1):35–41PubMedGoogle Scholar
  12. Cordova A, Tripoli M, Corradino B et al (2005) Dupuytren’s contracture: an update of biomolecular aspects and therapeutic perspectives. J Hand Surg Br 30(6):557–562PubMedCrossRefGoogle Scholar
  13. Dolmans GH, Werker PM, Hennies HC et al (2011) Wnt signaling and Dupuytren’s disease. N Engl J Med 365(4):307–317PubMedCrossRefGoogle Scholar
  14. Fitzgerald AM, Kirkpatrick JJ, Naylor IL (1999) Dupuytren’s disease. The way forward? J Hand Surg Br 24(4):395–399PubMedCrossRefGoogle Scholar
  15. Gabbiani G, Ryan GB, Majne G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27(5):549–550PubMedCrossRefGoogle Scholar
  16. Grenfell S, Borg M (2014) Radiotherapy in fascial fibromatosis: a case series, literature review and considerations for treatment of early-stage disease. J Med Imaging Radiat Oncol 58(5):641–647PubMedCrossRefGoogle Scholar
  17. Herskind C, Rodemann HP (2000) Spontaneous and radiation-induced differentiation of fibroblasts. Exp Gerontol 35(6–7):747–755, doi:S0531-5565(00)00168-6 [pii]PubMedCrossRefGoogle Scholar
  18. Hildebrandt G, Loppnow G, Jahns J et al (2003a) Inhibition of the iNOS pathway in inflammatory macrophages by low-dose X-irradiation in vitro. Is there a time dependence? Strahlenther Onkol 179(3):158–166PubMedCrossRefGoogle Scholar
  19. Hildebrandt G, Radlingmayr A, Rosenthal S et al (2003b) Low-dose radiotherapy (LD-RT) and the modulation of iNOS expression in adjuvant-induced arthritis in rats. Int J Radiat Biol 79(12):993–1001PubMedCrossRefGoogle Scholar
  20. Hinz B, Phan SH, Thannickal VJ et al (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170(6):1807–1816PubMedPubMedCentralCrossRefGoogle Scholar
  21. Iqbal SA, Hayton MJ, Watson JS et al (2014) First identification of resident and circulating fibrocytes in Dupuytren’s disease shown to be inhibited by serum amyloid P and Xiapex. PLoS One 9(6), e99967PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kern PM, Keilholz L, Forster C et al (2000) Low-dose radiotherapy selectively reduces adhesion of peripheral blood mononuclear cells to endothelium in vitro. Radiother Oncol 54(3):273–282PubMedCrossRefGoogle Scholar
  23. Kloen P, Jennings CL, Gebhardt MC et al (1995) Transforming growth factor-beta: possible roles in Dupuytren’s contracture. J Hand Surg Am 20(1):101–108PubMedCrossRefGoogle Scholar
  24. Krause C, Kloen P, Ten Dijke P (2011) Elevated transforming growth factor beta and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren’s disease fibroblasts. Fibrogenesis Tissue Repair 4(1):14PubMedPubMedCentralCrossRefGoogle Scholar
  25. Lodermann B, Wunderlich R, Frey S et al (2012) Low dose ionising radiation leads to a NF-kappa B dependent decreased secretion of active IL-1 beta by activated macrophages with a discontinuous dose-dependency. Int J Radiat Biol 88(10):727–734PubMedCrossRefGoogle Scholar
  26. Meek RM, McLellan S, Crossan JF (1999) Dupuytren’s disease. A model for the mechanism of fibrosis and its modulation by steroids. J Bone Joint Surg Br 81(4):732–738PubMedCrossRefGoogle Scholar
  27. Meek RM, McLellan S, Reilly J, Crossan JF (2002) The effect of steroids on Dupuytren’s disease: role of programmed cell death. J Hand Surg Br 27(3):270–273PubMedCrossRefGoogle Scholar
  28. Murrell GA, Francis MJ, Bromley L (1987) Free radicals and Dupuytren’s contracture. Br Med J (Clin Res Ed) 295(6610):1373–1375CrossRefGoogle Scholar
  29. Murrell GA, Francis MJ, Bromley L (1990) Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 265(3):659–665PubMedPubMedCentralCrossRefGoogle Scholar
  30. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361PubMedPubMedCentralCrossRefGoogle Scholar
  31. Rehman S, Goodacre R, Day PJ, Bayat A, Westerhoff HV (2011) Dupuytren’s: a systems biology disease. Arthritis Res Ther 13(5):238PubMedPubMedCentralCrossRefGoogle Scholar
  32. Richards SA, Muter J, Ritchie P, Lattanzi G, Hutchison CJ (2011) The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet 20(20):3997–4004PubMedCrossRefGoogle Scholar
  33. Robbins ME, Zhao W (2004) Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 80(4):251–259PubMedCrossRefGoogle Scholar
  34. Rödel F, Frey B, Capalbo G, Gaipl U, Keilholz L, Voll R, Hildebrandt G, Rodel C (2010) Discontinuous induction of X-linked inhibitor of apoptosis in EA.hy.926 endothelial cells is linked to NF-kappaB activation and mediates the anti-inflammatory properties of low-dose ionising-radiation. Radiother Oncol 97(2):346–351PubMedCrossRefGoogle Scholar
  35. Rödel F, Frey B, Manda K, Hildebrandt G, Hehlgans S, Keilholz L, Seegenschmiedt MH, Gaipl US, Rodel C (2012) Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose x-irradiation. Front Oncol 2:120PubMedPubMedCentralCrossRefGoogle Scholar
  36. Rödel F, Frey B, Multhoff G, Gaipl U (2015) Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett 356(1):105–113PubMedCrossRefGoogle Scholar
  37. Rödel F, Kley N, Beuscher HU, Hildebrandt G, Keilholz L, Kern P, Voll R, Herrmann M, Sauer R (2002) Anti-inflammatory effect of low-dose X-irradiation and the involvement of a TGF-beta1-induced down-regulation of leukocyte/endothelial cell adhesion. Int J Radiat Biol 78(8):711–719CrossRefGoogle Scholar
  38. Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol 35(2):83–90PubMedCrossRefGoogle Scholar
  39. Rodemann HP, Peterson HP, Schwenke K, von Wangenheim KH (1991) Terminal differentiation of human fibroblasts is induced by radiation. Scanning Microsc 5(4):1135–1142; discussion 1142–1133PubMedGoogle Scholar
  40. Rubin P, Soni A, Williams JP (1999) The molecular and cellular biologic basis for the radiation treatment of benign proliferative diseases. Semin Radiat Oncol 9(2):203–214PubMedCrossRefGoogle Scholar
  41. Rudolph R, Vande Berg J (1991) The myofibroblast in Dupuytren’s contracture. Hand Clin 7(4):683–692; discussion 693–684PubMedGoogle Scholar
  42. Schaue D, Marples B, Trott KR (2002) The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages. Int J Radiat Biol 78(7):567–576PubMedCrossRefGoogle Scholar
  43. Seegenschmiedt MH, Makoski HB, Trott KR, Brady LWE (2008) Radiotherapy for non-malignant disorders. Medical radiology diagnostic imaging and radiation oncology. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  44. Seegenschmiedt MH, Micke O, Niewald M, Mucke R, Eich HT, Kriz J, Heyd R (2015) DEGRO guidelines for the radiotherapy of non-malignant disorders : part III: hyperproliferative disorders. Strahlenther Onkol 191(7):541–548PubMedCrossRefGoogle Scholar
  45. Shih B, Bayat A (2010) Scientific understanding and clinical management of Dupuytren disease. Nat Rev Rheumatol 6(12):715–726PubMedCrossRefGoogle Scholar
  46. Smitt MC, Donaldson SS (1999) Radiation therapy for benign disease of the orbit. Semin Radiat Oncol 9(2):179–189PubMedCrossRefGoogle Scholar
  47. Speyer CL, Ward PA (2011) Role of endothelial chemokines and their receptors during inflammation. J Invest Surg 24(1):18–27PubMedCrossRefGoogle Scholar
  48. Suit H, Spiro I (1999) Radiation treatment of benign mesenchymal disease. Semin Radiat Oncol 9(2):171–178PubMedCrossRefGoogle Scholar
  49. Travis EL (2001) Organizational response of normal tissues to irradiation. Semin Radiat Oncol 11(3):184–196PubMedCrossRefGoogle Scholar
  50. Tsukimoto M, Homma T, Mutou Y, Kojima S (2009) 0.5 Gy gamma radiation suppresses production of TNF-alpha through up-regulation of MKP-1 in mouse macrophage RAW264.7 cells. Radiat Res 171(2):219–224PubMedCrossRefGoogle Scholar
  51. Verjee LS, Verhoekx JS, Chan JK, Krausgruber T, Nicolaidou V, Izadi D, Davidson D, Feldmann M, Midwood KS, Nanchahal J (2013) Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc Natl Acad Sci U S A 110(10):E928–E937PubMedPubMedCentralCrossRefGoogle Scholar
  52. Wong M, Mudera V (2006) Feedback inhibition of high TGF-beta1 concentrations on myofibroblast induction and contraction by Dupuytren’s fibroblasts. J Hand Surg Br 31(5):473–483PubMedCrossRefGoogle Scholar
  53. Yarnold J, Brotons MC (2010) Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol 97(1):149–161PubMedCrossRefGoogle Scholar
  54. Zhao W, Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16(2):130–143PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Radiotherapy and OncologyGoethe-University Frankfurt am MainFrankfurt am MainGermany
  2. 2.Strahlenzentrum Hamburg NordHamburgGermany

Personalised recommendations