Skip to main content

Machine Learning Techniques for Intelligent Access Control

  • 965 Accesses

Part of the Intelligent Systems Reference Library book series (ISRL,volume 108)


Access control is a set of regulations that governs access to certain areas or information. By access we mean entering a specific area, or logging on a machine. The access regulated by a set of rules that specifies who is allowed to get access and what is the restrictions on such access. Across the years several access control systems have been developed. Due to the rapid advancement in technology over the past years, older systems are now easily by passed, thus the need to have new methods of access control. Biometrics is referred to as an authentication technique that relies on a computer system to electronically validate a measurable biological characteristic that is physically unique and cannot be duplicated. Biometrics has been used for ages as access control security system. In this chapter we will present several biometric techniques their usage, advantages and disadvantages.


  • Data protection
  • Privacy
  • Biometrics
  • Machine learning

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-32192-9_10
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-32192-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8
Fig. 10.9
Fig. 10.10


  1. Biometrics History: (2014). Accessed 26 Apr 2014

  2. Gupta, C.N., Palaniappan, R.: Biometric paradigm using visual evoked potential. In: Encyclopedia of Information Science and Technology, vol. 1, 2nd edn, pp. 362–368 (2009)

    Google Scholar 

  3. Liu, S., Silverman, M.: A practical guide to biometric security technology. IT Prof. 3(1), 27–32 (2001)

    CrossRef  Google Scholar 

  4. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. 40(31), 614–634 (2001)

    CrossRef  Google Scholar 

  5. Yun, Y.W.: The ‘123’ of biometric technology. In: Biometrics Working Group of Security and Privacy Standards Technical Committee, pp. 80–96 (2002)

    Google Scholar 

  6. Jafri, R., Arabnia, H.R.: A survey of face recognition techniques. J. Inf. Process. Syst. 5(2), 41–68 (2009)

    CrossRef  Google Scholar 

  7. Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)

    CrossRef  Google Scholar 

  8. Shen, P., Andrew, B., Jin, T., Shiang, Y.: A survey of keystroke dynamics biometrics. Sci. World J. 1–24 (2013)

    Google Scholar 

  9. Fabian, M., Aviel, R.: Keystroke dynamics as a biometric for authentication. Future Gener. Comput. Syst. 16, 351–359 (2000)

    CrossRef  Google Scholar 

  10. (2014). Accessed 26 Apr 2014

  11. Arun, R., Anil, J.: Information fusion in biometrics. Pattern Recogn. Lett. 24, 2115–2125 (2003)

    CrossRef  Google Scholar 

  12. Ross, A., Jain, A.K.: Fusion techniques in multibiometric systems. In: Face Biometrics for Personal Identification, pp. 185–212. Springer (2007)

    Google Scholar 

  13. Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer Science + Business Media, LLC (2006)

    Google Scholar 

  14. ISO/IEC TR 24722. Information technology. In: Biometrics: Multimodal and Other Multibiometric Fusion (2007)

    Google Scholar 

  15. Riera, A., Soria-Frisch, A., Caparrini, M., Cester, I., Ruffini, G.: Multimodal physiological biometrics authentication. In: Biometrics: Theory, Methods, and Applications, pp. 461–482. Wiley Press (2010)

    Google Scholar 

  16. ENOBIO. (2014). Accessed 26 Apr 2014

  17. Ramaswamy, P.: Multiple mental thought parametric classification: a new approach for individual identification. Proc. Int. J. Signal Process. 2, 222–226 (2006)

    Google Scholar 

  18. Cempírek, M., Šťastný, J.: The optimization of the EEG-based biometric classification. Appl. Electron. 25–28 (2007)

    Google Scholar 

  19. Forecasting with Artificial Neural Networks. (2014). Accessed 26 Apr 2014

  20. Sun, S.: Multitask learning for EEG-based biometrics. In: Proceeding of International Conference on Pattern Recognition, pp. 51–55 (2008)

    Google Scholar 

  21. Jain, K.A., Pankanti, S., Prabhakar, S., Uludag, U.: Issues and challenges. Proc. IEEE 92(6), 948–960 (2004)

    CrossRef  Google Scholar 

  22. Finger Print Features. (2014). Accessed 26 Apr 2014

  23. Face Recognition Features. (2014). Accessed 26 Apr 2014

  24. Iris Features. (2014). Accessed 26 Apr 2014

  25. KeyStroke Features. (2014). Accessed 26 Apr 2014

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wael H. Khalifa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khalifa, W.H., Roushdy, M.I., Salem, AB.M. (2016). Machine Learning Techniques for Intelligent Access Control. In: Kountchev, R., Nakamatsu, K. (eds) New Approaches in Intelligent Image Analysis. Intelligent Systems Reference Library, vol 108. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32190-5

  • Online ISBN: 978-3-319-32192-9

  • eBook Packages: EngineeringEngineering (R0)