Skip to main content

Investigating the Swimming of Microbial Pathogens Using Digital Holography

  • Chapter
  • First Online:
Biophysics of Infection

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 915))

Abstract

To understand much of the behaviour of microbial pathogens, it is necessary to image living cells, their interactions with each other and with host cells. Species such as Escherichia coli are difficult subjects to image: they are typically microscopic, colourless and transparent. Traditional cell visualisation techniques such as fluorescent tagging or phase-contrast microscopy give excellent information on cell behaviour in two dimensions, but no information about cells moving in three dimensions. We review the use of digital holographic microscopy for three-dimensional imaging at high speeds, and demonstrate its use for capturing the shape and swimming behaviour of three important model pathogens: E. coli, Plasmodium spp. and Leishmania spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although, intriguingly, not yet among the archaea (Cavicchioli et al. 2003).

  2. 2.

    Eukaryotic flagella and motile cilia are structurally very similar; their names appear to be used somewhat interchangeably within the motility literature.

References

  • Allen RD (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Ann Rev Biophys Biophys Chem 14:265–290

    Article  CAS  Google Scholar 

  • Bates PA, Rogers PA (2004) New insights into the developmental biology and transmission mechanisms of leishmania. Curr Mol Med 4:601–609

    Article  CAS  PubMed  Google Scholar 

  • Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500

    Article  CAS  PubMed  Google Scholar 

  • Born M, Wolf E (2005) Principles of optics, 7th edn. Cambridge University Press

    Google Scholar 

  • Cavicchioli R, Curmi PMG, Saunders N, Thomas T (2003) Pathogenic archaea: do they exist? BioEssays 25(11):1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Colin R, Zhang R, Wilson LG (2014) Fast, high-throughput measurement of collective behaviour in a bacterial population. J R Soc Interface 11:20140486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corkidi G, Taboada B, Wood CD, Guerrero A, Darszon A (2008) Tracking sperm in three-dimensions. Biochem Biophys Res Comm 373:125–129

    Article  CAS  PubMed  Google Scholar 

  • Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  • Cuche E, Bevilacqua F, Depeursinge C (1999) Digital holography for quantitative phase-contrast imaging. Opt Lett 24:291–293

    Article  CAS  PubMed  Google Scholar 

  • Edwards C, Zhoui R, Hwang S-H, McKeown SJ, Wang K, Bhaduri B, Ganti R, Yunker PJ, Yodh AG, Rogers JA, Goddard LL, Popescu G (2014) Diffraction phase microscopy: monitoring nanoscale dynamics in materials science. Appl Optics 53(27):G33–G43

    Article  Google Scholar 

  • Forestier C-L, Machu C, Loussert C, Pescher P, Späth GF (2011) Imaging host cell-leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host Microbe 9(4):319–330

    Google Scholar 

  • Foxman B (2010) The epidemiology of urinary tract infection. Nat Rev Urol 7:653–660

    Article  PubMed  Google Scholar 

  • Fung J, Martin KE, Perry RW, Katz DM, McGorty R, Manoharan VN (2011) Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy. Opt Express 19(9):8051–8065

    Article  PubMed  Google Scholar 

  • Gabor D (1948) A new microscopic principle. Nature 161(161):18275–18282

    Google Scholar 

  • Giuliano CB, Zhang R, Wilson LG (2014) Digital inline holographic microscopy (dihm) of weakly-scattering subjects. J Vis Exp 84:e50488

    Google Scholar 

  • Goodman JW (2005) Introduction to fourier optics, 3rd edn. Roberts and Company

    Google Scholar 

  • Hill KL (2003) Biology and mechanism of trypanosome cell motility. Eukaryot Cell 2(2):200–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jikeli JF, Alvarez L, Friedrich BM, Wilson LG, Pascal R, Colin R, Pichlo M, Rennhack A, Brenker C, Kaupp UB (2015) Sperm navigation along helical paths in 3d chemoattractant landscapes. Nat Commun 6:7985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Micriobiol 9:604–615

    Article  CAS  Google Scholar 

  • Kim MK (2010) Principles and techniques of digital holographic microscopy. SPIE Rev 1:018005

    Google Scholar 

  • Lauga E, DiLuzio WR, Whitesides GM, Stone HA (2006) Swimming in circles: motion of bacteria near solid boundaries. Biophys J 90:400–412

    Google Scholar 

  • Lee S-H, Grier DG (2007) Holographic microscopy of holographically trapped three-dimensional structures. Opt Express 15(4):1505–1512

    Article  PubMed  Google Scholar 

  • Lee SH, Roichman Y, Yi G-R, Kim S-H, Yang S-M, van Blaaderen A, van Oostrum P, Grier DG (2007) Characterizing and tracking single colloidal particles with video holographic microscopy. Opt Express 15(26):18275–18282

    Article  PubMed  Google Scholar 

  • Li G, Tang JX (2009) Accumulation of microswimmers near a surface mediated by collision and rotational brownian motion. Phys Rev Lett 103:078101

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindemann CB (2011) Experimental evidence for the geometric clutch hypothesis. Curr Top Dev Biol 95:1–31

    Article  PubMed  Google Scholar 

  • Mandel L, Wolf E (1995) Optical coherence and quantum optics. Cambridge University Press

    Google Scholar 

  • Merola F, Miccio L, Memmolo P, Di Caprio G, Galli A, Puglisi R, Balduzzi D, Coppola G, Netti P, Ferraro P (2013) Digital holography as a method for 3d imaging and estimating the biovolume of motile cells. Lab Chip 13:4512–4516

    Article  CAS  PubMed  Google Scholar 

  • Molaei M, Barry M, Stocker R, Sheng J (2014) Failed escape: solid surfaces prevent tumbling of Escherichia coli. Phys Rev Lett 113:068103

    Article  PubMed  Google Scholar 

  • Mosser DM, Brittingham A (1997) Leishmania, macrophages and complement: a tale of subversion and exploitation. Parasitology 115:S9–S23

    Article  PubMed  Google Scholar 

  • Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, Oztoprak C, Seo S, Khademhosseini B, Ozcan A (2010) Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10:1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakane D, Miyata M (2012) Mycoplasma mobile cells elongated by detergent and their pivoting movements in gliding. J Bacteriol 194(1):122–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YK, Choi W, Yaqoob Z, Dasari R, Badizadegan K, Feld MS (2009) Speckle-field digital holographic microscopy. Opt Express 17(15):12285–12292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel-Kruse IH, Hilfinger A, Howard J, Jülicher F (2007) How molecular motors shape the flagellar beat. HFSP J 1(3):192–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers ME (2012) The role of Leishmania proteophosphoglycans in sand fly transmission and infection of the mammalian host. Front. Microbiol 3:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers M, Kropf P, Choi B-S, Dillon R, Podinovskaia M, Bates P, Müller I (2009) Proteophosophoglycans regurgitated by leishmania-infected sand flies target the l-arginine metabolism of host macrophages to promote parasite survival. Microbes Infect 5:e1000555

    Google Scholar 

  • Rogers ME, Corware K, Müller I, Bates PA (2010) Leishmania infantum proteophosphoglycans regurgitated by the bite of its natural sand fly vector, Lutzomyia longipalpis, promote parasite establishment in mouse skin and skin-distant tissues. Microbes Infect 12:875–879

    Article  CAS  PubMed  Google Scholar 

  • Rosen J, Brooker G (2007) Fluorescence incoherent color holography. Opt Express 15:2244–2250

    Article  Google Scholar 

  • Schnars U, Jüptner W (1994) Direct recording of holograms by a ccd target and numerical reconstruction. Appl Opt 33:179–181

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat Meth 9(7):671–675

    Article  CAS  Google Scholar 

  • Shrivastava A, Lele PP, Berg HC (2015) A rotary motor drives Flavobacterium gliding. Curr Biol 25:338–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su TW, Xue L, Ozcan A (2012) High-throughput lensfree 3d tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Acad Sci 109:16018–16022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talman AM, Prieto JH, Marques S, Ubaida-Mohien C, Lawniczak M, Wass MN, Xu T, Frank R, Ecker A, Stanway RS, Krishna S, Sternberg MEJ, Christophides GK, Graham DR, Dinglasan RR, Yates JR III, Sinden RE (2014) Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility. Malaria J 13:315

    Article  Google Scholar 

  • Wass MN, Stanway R, Blagborough AM, Lal K, Prieto JH, Raine D, Sternberg MJE, Talman AM, Tomley F, Yates J III, Sinden RE (2012) Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls. Parasitology 139:1131–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson Laurence, Zhang Rongjing (2012) 3d localization of weak scatterers in digital holographic microscopy using Rayleigh-Sommerfeld back-propagation. Opt Express 20(15):16735–16744

    Article  Google Scholar 

  • Wilson LG, Martinez VA, Schwarz-Linek J, Tailleur J, Bryant G, Pusey PN, Poon WCK (2011) Differential dynamic microscopy of bacterial motility. Phys Rev Lett 106(1):018101

    Article  CAS  PubMed  Google Scholar 

  • Wilson LG, Carter LM, Reece SE (2013) High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms. Proc Natl Acad Sci USA 110(47):18769–18774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2014) World malaria report. WHO Press

    Google Scholar 

  • Wright KJ, Seed PC, Hultgren SJ (2005) Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73(11):7657–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Jericho MH, Meinertzhagen IA, Kreuzer HJ (2001) Digital in-line holography for biological applications. Proc Natl Acad Sci 98(20):11301–11305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thornton, K.L., Findlay, R.C., Walrad, P.B., Wilson, L.G. (2016). Investigating the Swimming of Microbial Pathogens Using Digital Holography. In: Leake, M. (eds) Biophysics of Infection. Advances in Experimental Medicine and Biology, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-319-32189-9_3

Download citation

Publish with us

Policies and ethics