Skip to main content

MEMS Devices in Agriculture

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

This chapter is dedicated to Micro-electro-mechanical Systems (MEMS) devices developed for primary use in agriculture. We can see MEMS devices in ink jet printers (printer heads), automobiles (e.g., airbag accelerometer), projectors (digital micromirror device for DLP projectors), mobile devices (e.g., gyroscopes for smartphones, tablets, etc.), healthcare applications (e.g., lab-on-a-chip for the detection of multiple tropical infectious diseases), among others. Although it is expected to grow, the use of MEMS devices used in agriculture still comes down to a few cases in research centers. However, due to demand for improved agricultural processes and the future widespread use of the Internet of Things (IoT), a high demand for small size, low cost, low power, and easily mass produced devices is expected. This context suggests the use of MEMS devices for both sensing elements, and for energy harvesters. In this chapter, only the sensor elements whose major use is agriculture will be addressed. From this perspective, the main parameters used in agriculture will be addressed taking into account research and development ever held in MEMS devices for measuring these parameters. These key parameters are grouped into classes: environment, soil, agricultural crops, and livestock. For almost all of the parameters shown, MEMS devices showed encouraging results. Most work with MEMS for agriculture has been done in laboratories so far. However, transitioning to field applications seems feasible. Potential advantages of MEMS are: small size, economical production (specially in large scale), built-in electronics (for auto-calibration, self-testing, digital compensation, and digital communications), and low power consumption—ideal for the use in Precision Agriculture complemented by Internet of Things. In short, this chapter will allow researchers developing MEMS devices to have a knowledge of what has already been developed for agriculture and to have an idea of future needs in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Utilize changes in the physical and electrical properties of the sensitive elements when exposed to the different atmospheric humidity conditions of the surrounding environment, and provide a measure of the humidity due to some amount of adsorption and desorption of water vapor molecules.

  2. 2.

    Instrument to measure moisture tension [56].

References

  1. Bariáin C, Matías IR, Arregui FJ, López-Amo M (2000) Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sens Actuators B Chem 69(1–2):127–131. doi:http://dx.doi.org/10.1016/S0925-4005(00)00524-4. http://www.sciencedirect.com/science/article/pii/S0925400500005244

  2. Bilskie J, Horton R, Bristow K (1998) Test of a dual-probe, heat-pulse method for determining thermal properties of porous materials. Soil Sci 163(5):346–355. http://www.soilsci.com/pt/re/soilsci/fulltext.00010694-199805000-00002.htm

  3. Bleyaert P, Vermeulen K, Steppe K, Dekock J (2012) Evaluation of a sensor for online measurements of stem diameter variations of leafy vegetables. Acta Hortic 927:571–579. doi:10.17660/actahortic.2012.927.70. http://dx.doi.org/10.17660/ActaHortic.2012.927.70

  4. Bristow KL, Campbell GS, Calissendorff K (1993) Test of a heat-pulse probe for measuring changes in soil water content. Soil Sci Soc Am J 57:930–934

    Article  Google Scholar 

  5. Bristow K, Kluitenberg G, Horton R (1994) Measurement of soil thermal properties with a dual-probe heat-pulse technique. Soil Sci Soc Am J 58:1288–1294

    Article  Google Scholar 

  6. Bristow K, White R, Kluitenberg G (1994) Comparison of single and dual probes for measuring soil thermal properties with transient heating. Aust J Soil Res 32:447–464

    Article  Google Scholar 

  7. Bristow K, Kluitenberg G, Goding C, Fitzgerald T (2001) A small multi-needle probe for measuring soil thermal properties, water content and electrical conductivity. Comput Electron Agric 31(3):265–280

    Article  Google Scholar 

  8. Brown-Brandl TM, Yanagi T, Xin H, Gates R, Bucklin R, Ross G (2001) Telemetry system for measuring core body temperature in livestock and poultry. In: 2001 Sacramento, CA July 29-August 1, 2001, American Society of Agricultural and Biological Engineers (ASABE). doi:10.13031/2013.23649. http://dx.doi.org/10.13031/2013.23649

  9. Buchhold R, Nakladal A, Gerlach G, Neumann P (1998) Design studies on piezoresistive humidity sensors. Sens Actuators B Chem 53(1–2):1–7. doi:http://dx.doi.org/10.1016/S0925-4005(98)00297-4. http://www.sciencedirect.com/science/article/pii/S0925400598002974

  10. Campbell GS, Calissendorff K, Williams JH (1991) Probe for measuring soil specific heat using a heat pulse method. Soil Sci Soc Am J 55:291–293

    Article  Google Scholar 

  11. Campbell D, Laybourne C, Blair I (2002) Measuring peat moisture content using the dual-probe heat pulse technique. Aust J Soil Res 40(1):177–190

    Article  Google Scholar 

  12. Čermák J, Deml M, Penka M (1973) A new method of sap flow rate determination in trees. Biol Plant 15(3):171–178. doi:10.1007/bf02922390. http://dx.doi.org/10.1007/BF02922390

  13. Chen J, Liu C (2003) Development and characterization of surface micromachined, out-of-plane hot-wire anemometer. J Microelectromech Syst 12(6):979–988. doi:10.1109/JMEMS.2003.820261

    Article  Google Scholar 

  14. Chen Z, Lu C (2005-12-01T00:00:00) Humidity sensors: A review of materials and mechanisms. Sens Lett 3(4):274–295. doi:doi:10.1166/sl.2005.045. http://www.ingentaconnect.com/content/asp/senlet/2005/00000003/00000004/art00002

  15. Cuerva A, Sanz-Andrès A (2000) On sonic anemometer measurement theory. J Wind Eng Ind Aerodyn 88(1):25–55. doi:http://dx.doi.org/10.1016/S0167-6105(00)00023-4. http://www.sciencedirect.com/science/article/pii/S0167610500000234

  16. Dinamax (2016) Dinamax DEX20, DEX70, DEX100, and DEX200 plant growth sensors. http://www.dynamax.com/products/plant-growth-sensors/dex-fruit-stem-growth-dendrometer, Accessed on 18 Jan 2016

  17. Doe P (2015) IoT needs new MEMS approaches. http://www.eetimes.com/author.asp?section_id=36&doc_id=1326768&, Accessed on 18 Jan 2016

  18. Du L, Zhao Z, Pang C (2007) Design and fabrication MEMS-based micro solid state cantilever wind speed sensor. In: International conference on information acquisition, 2007. ICIA ’07, pp 336–340. doi:10.1109/ICIA.2007.4295754

  19. Ecomatik (2016) Ecomatik diameter dendrometer small (DD-S). http://www.ecomatik.de/en/diameter_dendrometer1.php, Accessed on 18 Jan 2016

  20. Fang Z, Zhao Z, Wu Y, Zhang B, Wang Y (2004) Integrated temperature and humidity sensor based MEMS. In: Proceedings of international conference on information acquisition, 2004, pp 84–87. doi:10.1109/ICIA.2004.1373325

  21. Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5):7881. doi:10.3390/s140507881. http://www.mdpi.com/1424-8220/14/5/7881

  22. Feng C, Liu J, Wei W, Shi Y (2005) Multi-functional soil water velocity instrument based heat pulse probe. In: ICEMI 2005: conference proceedings of the seventh international conference on electronic measurement & instruments, 5(5):580–583

    Google Scholar 

  23. Fielder P, Comeau P, of Forests Research Branch BCM (2000) Construction and testing of an inexpensive PAR sensor. Working paper (British Columbia. Ministry of Forests. Research Branch), British Columbia, Ministry of Forests Research Program. http://www.lexingtonwx.com/techdata/Wp53SolarSensor.pdf

  24. Fitch K, Kemker C (2014) Solar radiation and photosynethically active radiation. http://www.fondriest.com/environmental-measurements/parameters/weather/solar-radiation/, Accessed on 18 Jan 2016

  25. Futagawa M, Ishida M, Ishida M, Sawada K (2011) Study of a wireless multimodal sensing system integrated with an electrical conductivity sensor and a temperature sensor for the health control of cows. IEEE Trans Electric Electron Eng 6(2):93–96. doi:10.1002/tee.20629. http://dx.doi.org/10.1002/tee.20629

  26. Ham J, Benson E (2004) On the construction and calibration of dual-probe heat capacity sensors. Soil Sci Soc Am J 68(4):1185–1190

    Article  Google Scholar 

  27. Hamamatsu (2014) S1087/s1133 series of Si photodiodes. http://www.hamamatsu.com/resources/pdf/ssd/s1087_etc_kspd1039e.pdf, Accessed on 18 Jan 2016

  28. Heitman J, Horton R, Ren T, Ochsner T (2007) An improved approach for measurement of coupled heat and water transfer in soil cells. Soil Sci Soc Am J 71(3):872–880

    Article  Google Scholar 

  29. Helwatka A, Riordan D, Walsh J (2014) Sensor technology for animal health monitoring. In: 8th international conference on sensing technology, Liverpool, pp 266–271. http://www.s2is.org/icst-2014/papers/1569961281.pdf

  30. Hicks LC, Hicks WS, Bucklin RA, Shearer JK, Bray DR, Soto P, Carvalho V (2001) Comparison of methods of measuring deep body temperatures of dairy cows. In: Stowell RR, Bucklin R, Bottcher RW (eds) Livestock environment VI, Proceedings of the 6th international symposium 2001, American Society of Agricultural and Biological Engineers (ASABE), Louisville, Kentucky. doi:10.13031/2013.7101. http://dx.doi.org/10.13031/2013.7101

  31. Hirokubo N, Komatsu H, Hashimoto N, Sonehara M, Sato T (2012) Wideband visible wavelength range MEMS Fabry-Perot tunable filter with calibration system. In: 2012 IEEE Sensors, pp 1–4. doi:10.1109/ICSENS.2012.6411107

  32. Hirokubo N, Komatsu H, Hashimoto N, Sonehara M, Sato T (2013) Wideband visible wavelength range MEMS Fabry - Perot tunable filter with highly accurate calibration system. IEEE Sens J 13(8):2930–2936. doi:10.1109/JSEN.2013.2264458

    Article  Google Scholar 

  33. Hopmans J, Mori Y, Mortensen AP, Kluitenberg G, Tuli A, Valente A (2006) Multi-functional heat pulse probe measurements of water, heat, and solute transport in the vadose zone. The 18th World Congress of Soil Science

    Google Scholar 

  34. Jackson T, Mansfield K, Saafi M, Colman T, Romine P (2008) Measuring soil temperature and moisture using wireless {MEMS} sensors. Measurement 41(4):381–390. doi:http://dx.doi.org/10.1016/j.measurement.2007.02.009. http://www.sciencedirect.com/science/article/pii/S0263224107000255

  35. Kato N, Ohkuma T, Kim J, Marukawa H, Niihori Y (1992) Full scale measurements of wind velocity in two urban areas using an ultrasonic anemometer. J Wind Eng Ind Aerodyn 41(1):67–78. doi:http://dx.doi.org/10.1016/0167-6105(92)90394-P. http://www.sciencedirect.com/science/article/pii/016761059290394P

  36. Khairi N, Rizam MS, Naimah M, Nooritawati M, Husna Z (2012) Diameter stem changes detection sensor evaluation using different size of strain gauge on dendrobium stem. Procedia Eng 41:1421–1425. International symposium on robotics and intelligent sensors 2012 (IRIS 2012). doi:http://dx.doi.org/10.1016/j.proeng.2012.07.330, http://www.sciencedirect.com/science/article/pii/S1877705812027300

  37. Klepper B, Browning VD, Taylor HM (1971) Stem diameter in relation to plant water status. Plant Physiol 48(6):683–685

    Article  Google Scholar 

  38. Liu J, Agarwal M, Varahramyan K, IV ESB, Hodo WD (2008) Polymer-based microsensor for soil moisture measurement. Sens Actuators B Chem 129(2):599–604. doi:http://dx.doi.org/10.1016/j.snb.2007.09.017. http://www.sciencedirect.com/science/article/pii/S0925400507007101

  39. Liu S, Yang Z, Zhang Y, Xue F, Pan S, Miao J, Norford L (2015) Micro triple-hot-wire anemometer on small sized glass tube fabricated in 5dof uv lithography system. In: 28th IEEE international conference on micro electro mechanical systems (MEMS), 2015, pp 714–717. doi:10.1109/MEMSYS.2015.7051057

  40. Ma RH, Wang YH, Lee CY (2011) Wireless remote weather monitoring system based on MEMS technologies. Sensors 11(3):2715–2727. doi:10.3390/s110302715. http://dx.doi.org/10.3390/s110302715

  41. Matsuguchi M, Sadaoka Y, Sakai Y, Kuroiwa T, Ito A (1991) A capacitive-type humidity sensor using cross-linked poly (methyl methacrylate) thin films. J Electrochem Soc138(6):1862–1865

    Google Scholar 

  42. Miranda N, Morais R, Dias M, Viegas C, Silva F, Serôdio C, Almeida J, Azevedo J, Reis M (2009) Bioimplantable impedance and temperature monitor low power micro-system suitable for estrus detection. Procedia Chem 1(1):505–508. Proceedings of the Eurosensors {XXIII} conference doi:http://dx.doi.org/10.1016/j.proche.2009.07.126. http://www.sciencedirect.com/science/article/pii/S1876619609001272

  43. Morais R, Valente A, Almeida JC, Silva AM, Soares S, Reis M, Valentim R, Azevedo J (2006) Concept study of an implantable microsystem for electrical resistance and temperature measurements in dairy cows, suitable for estrus detection. Sens Actuators A Phys 132(1):354–361. The 19th European conference on solid-state transducers. doi:http://dx.doi.org/10.1016/j.sna.2006.04.011. http://www.sciencedirect.com/science/article/pii/S0924424706002949

  44. Mori Y, Hopmans JW, Mortensen AP, Kluitenberg GJ (2003) Multi-functional heat pulse probe for the simultaneous measurement of soil water content, solute concentration, and heat transport parameters. Vadose Zone J 2:561–571

    Article  Google Scholar 

  45. Mortensen A, Hopmans J, Mori Y, Simunek J (2006) Multi-functional heat pulse probe measurements of coupled vadose zone flow and transport. Adv Water Resour 29(2):250–267

    Article  Google Scholar 

  46. Mounier E, Troadec C, Girardin G, de Charentenay Y (2015) Mems markets - status of the MEMS industry 2015. Market & technology report, Yole Développement. http://www.i-micronews.com/images/Flyers/MEMS/Yole_Status_of_the_MEMS_Industry_April_2015_web.pdf

  47. Muxlow J (2005) Importance of estrus detection on dairy farms: evaluating pedometers as a possible alternative to visual estrus observation. http://www.afimilk.com/knowledge-center/articles/importance-estrus-detection-dairy-farms-evaluating-pedometers-possible, Accessed on 18 Jan 2016

  48. Okcan B, Akin T (2004) A thermal conductivity based humidity sensor in a standard CMOS process. In: 17th IEEE international conference on micro electro mechanical systems, 2004 (MEMS), pp 552–555. doi:10.1109/MEMS.2004.1290644

  49. Ozoe K, Hida H, Kanno I, Higashiyama T, Notaguchi M (2015) Early characterization method of plant root adaptability to soil environments. In: 28th IEEE international conference on micro electro mechanical systems (MEMS), 2015, pp 702–705. doi:10.1109/MEMSYS.2015.7051054

  50. Pagay V, Lakso A, Strook A (2011) A novel MEMS-based microfluidic water potential sensor for monitoring of water stress in woody plants and soils. In: Shoshany M, Shaviv A (eds) AGRI-SENSING 2011 - international symposium on sensing in agriculture in memory of Dahlia Greidinger, Technion-Israel Institute of Technology, Haifa, p 95. http://agri-sensing.technion.ac.il/ABSTRACT%20BOOK%20final.pdf

    Google Scholar 

  51. Pagay V, Santiago M, Sessoms DA, Huber EJ, Vincent O, Pharkya A, Corso TN, Lakso AN, Stroock AD (2014) A microtensiometer capable of measuring water potentials below -10 MPa. Lab Chip 14(15):2806. doi:10.1039/c4lc00342j. http://dx.doi.org/10.1039/c4lc00342j

  52. Palaparthy VS, Baghini MS, Singh DN (2013) Review of polymer-based sensors for agriculture-related applications. Emerg Mater Res 2(4):166–180. doi:10.1680/emr.13.00010. http://dx.doi.org/10.1680/emr.13.00010

  53. Pascal-Delannoy F, Sorli B, Boyer A (2000) Quartz crystal microbalance (QCM) used as humidity sensor. Sens Actuators A Phys 84(3):285–291. doi:http://dx.doi.org/10.1016/S0924-4247(00)00391-5. http://www.sciencedirect.com/science/article/pii/S0924424700003915

  54. Rasher M (2001) The use of GPS and mobile mapping for decision-based precision agriculture. In: Asian GPS conference 2001, last visited on jan-2016

    Google Scholar 

  55. Ren T, Noborio K, Horton R (1999) Measuring soil water content, electrical conductivity, and thermal properties with a thermo-time domain reflectometry probe. Soil Sci Soc Am J 63(3):450–457

    Article  Google Scholar 

  56. Richards L (1942) Soil moisture tensiometer materials and construction. Soil Sci 53(4):241–248

    Article  Google Scholar 

  57. Rittersma Z (2002) Recent achievements in miniaturised humidity sensors - a review of transduction techniques. Sens Actuators A Phys 96(2–3):196–210. doi:10.1016/S0924-4247(01)00788-9. http://www.sciencedirect.com/science/article/pii/ S0924424701007889

  58. Sakuratani T (1981) A heat balance method for measuring water flux in the stem of intact plants. J Agric Meteorol 37(1):9–17. doi:10.2480/agrmet.37.9

    Article  Google Scholar 

  59. Santha H, Packirisamy M, Stiharu I, Li X, Rinaldi G (2005) A polyimide based resistive humidity sensor. Sens Rev 25(4):271–276

    Article  Google Scholar 

  60. Sentelhas PC, Monteiro JE, Gillespie TJ (2004) Electronic leaf wetness duration sensor: why it should be painted. Int J Biometeorol 48(4):202–205

    Article  Google Scholar 

  61. Shen W, Chen C, Zheng S, He S, Li M (2015) The design of system about cow activity based on SVM. IJSH 9(3):91–100 doi:10.14257/ijsh.2015.9.3.09. http://dx.doi.org/10.14257/ijsh.2015.9.3.09

  62. Smith D, Allen S (1996) Measurement of sap flow in plant stems. J Exp Bot 47(12):1833–1844. doi:10.1093/jxb/47.12.1833. http://jxb.oxfordjournals.org/content/47/12/1833.abstract, http://jxb.oxfordjournals.org/content/47/12/1833.full.pdf+html

  63. Steppe K, Lemeur R (2004) An experimental system for analysis of the dynamic sap-flow characteristics in young trees: results of a beech tree. Funct Plant Biol 31(1):83. doi:10.1071/fp03150. http://dx.doi.org/10.1071/FP03150

  64. Valente A, Morais R, Couto C, Correia J (2004) Modeling, simulation and testing of a silicon soil moisture sensor based on the dual-probe heat-pulse method. Sens Actuators A Phys 115(2-3):434–439

    Article  Google Scholar 

  65. Valente A, Morais R, Tuli A, Hopmans J, Kluitenberg G (2006) Multi-functional probe for small-scale simultaneous measurements of soil thermal properties, water content, and electrical conductivity. Sens Actuators A Phys 132(1):70–77

    Article  Google Scholar 

  66. Yang Z, Liu S, Xue F, Zhang Y, Zhao X, Miao J, Norford L (2015) Micro anemometer by a MEMS compatible lab-on-a-tube technology. In: 18th International Conference on solid-state sensors, actuators and microsystems (Transducers), 2015 Transducers - 2015, pp 383–386. doi:10.1109/TRANSDUCERS.2015.7180941

  67. Zhu Y, Chen B, Qin M, Huang J-q (2014) 2-D micromachined thermal wind sensors - a review. IEEE Internet Things J 1(3):216–232. doi:10.1109/JIOT.2014.2319296

    Article  Google Scholar 

  68. Zhu Y, Chen B, Qin M, Huang J-q (2015) A self-packaged self-heated thermal wind sensor with high reliability and low power consumption. In: 2015 IEEE 10th International Conference on nano/micro engineered and molecular systems (NEMS), pp 193–196. doi:10.1109/NEMS.2015.7147408

  69. Zhu Y, Chen B, Qin M, Huang J-q (2015) Development of a robust 2-d thermal wind sensor using glass reflow process for low power applications. In: 2015 IEEE 65th electronic components and technology conference (ECTC), pp 1633–1639. doi:10.1109/ECTC.2015.7159815

Download references

Acknowledgements

This work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme, and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project «POCI-01-0145-FEDER-006961»

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Valente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valente, A. (2017). MEMS Devices in Agriculture. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics