Skip to main content

Microfluidic Platforms for Bio-applications

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

This chapter provides a brief overview of three actuation mechanisms that are relevant for biomedical applications of microfluidics. Actuation mechanisms are employed in the field of microfluidics for realizing unit operations such as focusing, switching, and separation. The topics dealt with in this chapter include dielectrophoresis, acoustophoresis, and magnetophoresis. The first section provides an introduction to these and related topics while the second section deals specifically on dielectrophoresis. The third and fourth sections detail acoustophoresis and magnetophoresis, respectively. This chapter concludes by providing a quick comparison of these different actuation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices 26:1880–1886

    Article  Google Scholar 

  2. Nguyen N-T, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House, Norwood

    MATH  Google Scholar 

  3. Folch A (2012) Introduction to BioMEMS. CRC, Boca Raton

    Google Scholar 

  4. Saliterman S (2006) Fundamentals of BioMEMS and medical microdevices, vol 153. SPIE Press, Bellingham

    Google Scholar 

  5. Gervais T, Jensen KF (2006) Mass transport and surface reactions in microfluidic systems. Chem Eng Sci 61:1102–1121

    Article  Google Scholar 

  6. Jensen KF (1999) Microchemical systems: status, challenges, and opportunities. AIChE J 45:2051

    Article  Google Scholar 

  7. Kutter JP, Fintschenko Y (2005) Separation methods in microanalytical systems. CRC, Boca Raton

    Book  Google Scholar 

  8. Deen WM (1998) Analysis of transport phenomena, vol 3, Topics in chemical engineering. Oxford University Press, New York

    Google Scholar 

  9. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  10. White F (2006) Viscous fluid flow, McGraw-Hill series in mechanical engineering. McGraw-Hill, New York

    Google Scholar 

  11. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  Google Scholar 

  12. Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–172

    Article  Google Scholar 

  13. Pohl HA (1978) Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, vol 80. Cambridge University Press, Cambridge

    Google Scholar 

  14. Alazzam A, Stiharu I, Bhat R, Meguerditchian AN (2011) Interdigitated comb‐like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis 32:1327–1336

    Article  Google Scholar 

  15. Chen D, Du H, Li W (2007) Bioparticle separation and manipulation using dielectrophoresis. Sens Actuators A Phys 133:329–334

    Article  Google Scholar 

  16. Alazzam A, Roman D, Nerguizian V, Stiharu I, Bhat R (2010) Analytical formulation of electric field and dielectrophoretic force for moving dielectrophoresis using Fourier series. Microfluid Nanofluid 9:1115–1124

    Article  Google Scholar 

  17. Guo X, Zhu R (2015) Controllably moving individual living cell in an array by modulating signal phase difference based on dielectrophoresis. Biosens Bioelectron 68:529–535

    Article  Google Scholar 

  18. Zhang J, Yan S, Alici G, Nguyen N-T, Di Carlo D, Li W (2014) Real-time control of inertial focusing in microfluidics using dielectrophoresis (DEP). RSC Adv 4:62076–62085

    Article  Google Scholar 

  19. Zhu H, Lin X, Su Y, Dong H, Wu J (2015) Screen-printed microfluidic dielectrophoresis chip for cell separation. Biosens Bioelectron 63:371–378

    Article  Google Scholar 

  20. Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371

    Article  Google Scholar 

  21. Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15:426–432

    Article  Google Scholar 

  22. Huang Y, Holzel R, Pethig R, Wang X-B (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37:1499

    Article  Google Scholar 

  23. Huang Y, Yang J, Wang X-B, Becker FF, Gascoyne PR (1999) The removal of human breast cancer cells from hematopoietic CD34+ stem cells by dielectrophoretic field-flow-fractionation. J Hematother Stem Cell Res 8:481–490

    Article  Google Scholar 

  24. Mathew B, Alazzam A, Abutayeh M, Gawanmeh A, Khashan S (2015) Modeling the trajectory of microparticles subjected to dielectrophoresis in a microfluidic device for field flow fractionation. Chem Eng Sci 138:266–280

    Article  Google Scholar 

  25. Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31:2338

    Article  Google Scholar 

  26. Iliescu C, Yu L, Tay FE, Chen B (2008) Bidirectional field-flow particle separation method in a dielectrophoretic chip with 3D electrodes. Sens Actuators B 129:491–496

    Article  Google Scholar 

  27. LaLonde A, Romero‐Creel MF, Lapizco‐Encinas BH (2015) Assessment of cell viability after manipulation with insulator‐based dielectrophoresis. Electrophoresis 36(13):1479–1484

    Article  Google Scholar 

  28. Tay FE, Yu L, Pang AJ, Iliescu C (2007) Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation. Electrochim Acta 52:2862–2868

    Article  Google Scholar 

  29. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    Article  Google Scholar 

  30. Gascoyne PR, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973

    Article  Google Scholar 

  31. Becker FF, Wang X-B, Huang Y, Pethig R, Vykoukal J, Gascoyne P (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92:860–864

    Article  Google Scholar 

  32. Broche LM, Bhadal N, Lewis MP, Porter S, Hughes MP, Labeed FH (2007) Early detection of oral cancer—is dielectrophoresis the answer? Oral Oncol 43:199–203

    Article  Google Scholar 

  33. Cheng J, Sheldon EL, Wu L, Heller MJ, O’Connell JP (1998) Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal Chem 70:2321–2326

    Article  Google Scholar 

  34. Gascoyne PR, Wang X-B, Huang Y, Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl 33:670–678

    Article  Google Scholar 

  35. Pommer MS, Zhang Y, Keerthi N, Chen D, Thomson JA, Meinhart CD, Soh HT (2008) Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29:1213–1218

    Article  Google Scholar 

  36. Camarda M, Scalese S, La Magna A (2015) Analysis of the role of the particle–wall interaction on the separation efficiencies of field flow fractionation dielectrophoretic devices. Electrophoresis 36(13):1396–1404

    Article  Google Scholar 

  37. Mathew B, Alazzam A, Khashan S, El-Khasawneh B (2016), Path of microparticles in a microfluidic device employing dielectrophoresis for hyperlayer field-flow fractionation. Microsystem Technologies, pp 1–12

    Google Scholar 

  38. Wang X-B, Vykoukal J, Becker FF, Gascoyne PR (1998) Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation. Biophys J 74:2689–2701

    Article  Google Scholar 

  39. Huang Y, Wang X-B, Becker FF, Gascoyne P (1997) Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J 73:1118–1129

    Article  Google Scholar 

  40. Yang J, Huang Y, Wang X-B, Becker FF, Gascoyne PR (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal Chem 71:911–918

    Article  Google Scholar 

  41. Yang J, Huang Y, Wang X-B, Becker FF, Gascoyne PR (2000) Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys J 78:2680–2689

    Article  Google Scholar 

  42. Vykoukal J, Vykoukal DM, Freyberg S, Alt EU, Gascoyne PR (2008) Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation. Lab Chip 8:1386–1393

    Article  Google Scholar 

  43. Petersen E et al (2007) DNA migration and separation on surfaces with a microscale dielectrophoretic trap array. Phys Rev Lett 98:088102

    Article  Google Scholar 

  44. Kua CH, Lam YC, Rodriguez I, Yang C, Youcef-Toumi K (2007) Dynamic cell fractionation and transportation using moving dielectrophoresis. Anal Chem 79:6975–6987

    Article  Google Scholar 

  45. Fiedler S, Shirley SG, Schnelle T, Fuhr G (1998) Dielectrophoretic sorting of particles and cells in a microsystem. Anal Chem 70:1909–1915

    Article  Google Scholar 

  46. Taff BM, Voldman J (2005) A scalable addressable positive-dielectrophoretic cell-sorting array. Anal Chem 77:7976–7983

    Article  Google Scholar 

  47. Christensen TB, Pedersen CM, Bang DD, Wolff A (2007) Sample preparation by cell guiding using negative dielectrophoresis. Microelectron Eng 84:1690–1693

    Article  Google Scholar 

  48. Tornay R et al (2008) Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Lab Chip 8:267–273

    Article  Google Scholar 

  49. Nerguizian V, Alazzam A, Roman D, Stiharu I, Burnier M (2012) Analytical solutions and validation of electric field and dielectrophoretic force in a bio‐microfluidic channel. Electrophoresis 33:426–435

    Article  Google Scholar 

  50. Nieuwenhuis JH, Vellekoop MJ (2004) Simulation study of dielectrophoretic particle sorters. Sens Actuators B 103:331–338

    Article  Google Scholar 

  51. Wang X-B, Huang Y, Wang X, Becker FF, Gascoyne P (1997) Dielectrophoretic manipulation of cells with spiral electrodes. Biophys J 72:1887

    Article  Google Scholar 

  52. Yu L, Iliescu C, Xu G, Tay FE (2007) Sequential field-flow cell separation method in a dielectrophoretic chip with 3-D electrodes. J Microelectromech Syst 16:1120–1129

    Article  Google Scholar 

  53. Borgatti M et al (2005) Separation of white blood cells from erythrocytes on a dielectrophoresis (DEP) based ‘Lab-on-a-chip’ device. Int J Mol Med 15:913–920

    Google Scholar 

  54. Bocchi M, Lombardini M, Faenza A, Rambelli L, Giulianelli L, Pecorari N, Guerrieri R (2009) Dielectrophoretic trapping in microwells for manipulation of single cells and small aggregates of particles. Biosens Bioelectron 24:1177–1183

    Article  Google Scholar 

  55. Yu C, Vykoukal J, Vykoukal DM, Schwartz J, Shi L, Gascoyne PR (2005) A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications. J Microelectromech Syst 14:480–487

    Article  Google Scholar 

  56. Li H, Bashir R (2002) Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens Actuators B 86:215–221

    Article  Google Scholar 

  57. Lenshof A, Laurell T (2012) Acoustophoresis. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Berlin, pp 45–50

    Google Scholar 

  58. Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17:1–52

    Article  Google Scholar 

  59. Qiu Y et al (2014) Acoustic devices for particle and cell manipulation and sensing. Sensors 14:14806–14838

    Article  Google Scholar 

  60. Leong T, Johansson L, Juliano P, McArthur SL, Manasseh R (2013) Ultrasonic separation of particulate fluids in small and large scale systems: a review. Ind Eng Chem Res 52:16555–16576

    Article  Google Scholar 

  61. Lenshof A, Evander M, Laurell T, Nilsson J (2012) Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12:684–695

    Article  Google Scholar 

  62. Lin S-CS, Mao X, Huang TJ (2012) Surface acoustic wave (SAW) acoustophoresis: now and beyond. Lab Chip 12:2766–2770

    Article  Google Scholar 

  63. Nilsson A, Petersson F, Jönsson H, Laurell T (2004) Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4:131–135

    Article  Google Scholar 

  64. Piyasena ME, Austin Suthanthiraraj PP, Applegate RW Jr, Goumas AM, Woods TA, López GP, Graves SW (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831–1839

    Article  Google Scholar 

  65. Suthanthiraraj PPA, Piyasena ME, Woods TA, Naivar MA, Lόpez GP, Graves SW (2012) One-dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods 57:259–271

    Article  Google Scholar 

  66. Kuznetsova LA, Coakley WT (2004) Microparticle concentration in short path length ultrasonic resonators: roles of radiation pressure and acoustic streaming. J Acoust Soc Am 116:1956–1966

    Article  Google Scholar 

  67. Shields CW IV, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15:1230–1249

    Article  Google Scholar 

  68. Glynne-Jones P, Boltryk RJ, Hill M (2012) Acoustofluidics 9: modelling and applications of planar resonant devices for acoustic particle manipulation. Lab Chip 12:1417–1426

    Article  Google Scholar 

  69. Gedge M, Hill M (2012) Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. Lab Chip 12:2998–3007

    Article  Google Scholar 

  70. Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223

    Article  Google Scholar 

  71. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  Google Scholar 

  72. Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluid 9:1–16

    Article  Google Scholar 

  73. Shi J, Yazdi S, Lin S-CS, Ding X, Chiang I-K, Sharp K, Huang TJ (2011) Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 11:2319–2324

    Article  Google Scholar 

  74. Ding X et al (2012) Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12:4228–4231

    Article  Google Scholar 

  75. Jo MC, Guldiken R (2014) Particle manipulation by phase-shifting of surface acoustic waves. Sens Actuators A Phys 207:39–42

    Article  Google Scholar 

  76. Gossett DR et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267

    Article  Google Scholar 

  77. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359

    Article  Google Scholar 

  78. Chen Y et al (2014) Standing surface acoustic wave (SSAW)-based microfluidic cytometer. Lab Chip 14:916–923

    Article  Google Scholar 

  79. Li S et al (2013) An on-chip, multichannel droplet sorter using standing surface acoustic waves. Anal Chem 85:5468–5474

    Article  Google Scholar 

  80. Ai Y, Sanders CK, Marrone BL (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126–9134

    Article  Google Scholar 

  81. Zborowski M, Fuh CB, Green R, Sun L, Chalmers JJ (1995) Analytical magnetapheresis of ferritin-labeled lymphocytes. Anal Chem 67:3702–3712

    Article  Google Scholar 

  82. Gijs MA (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40

    Google Scholar 

  83. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–38

    Article  Google Scholar 

  84. Pankhurst QA, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167

    Article  Google Scholar 

  85. Han K-H, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6:265–273

    Article  Google Scholar 

  86. Jung J, Han K-H (2009) Lateral-driven continuous magnetophoretic microseparator for separating blood cells based on their native magnetic properties. In: Solid-state sensors, actuators and microsystems conference, 2009. TRANSDUCERS 2009. International, 2009. IEEE, pp 620–623

    Google Scholar 

  87. Schüler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473

    Article  Google Scholar 

  88. Inglis DW, Riehn R, Austin R, Sturm J (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85:5093–5095

    Article  Google Scholar 

  89. Inglis DW, Riehn R, Sturm JC, Austin RH (2006) Microfluidic high gradient magnetic cell separation. J Appl Phys 99:08K101

    Article  Google Scholar 

  90. Saias L, Saliba A-E, Viovy J-L, Pierga J-Y, Vielh P, Farace F (2009) Microfluidic magnetic cell sorting system for cancer diagnosis. La Houille Blanche, pp 105–111

    Google Scholar 

  91. Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic–microfluidic blood cleansing device. Lab Chip 9:1171–1177

    Article  Google Scholar 

  92. Tsutsui H, Ho C-M (2009) Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun 36:92–103

    Article  MATH  Google Scholar 

  93. Šafařık I, Šafařıková M (1999) Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl 722:33–53

    Article  Google Scholar 

  94. Dini L, Abbro L (2005) Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36:195–217

    Article  Google Scholar 

  95. Yi C, Li C-W, Ji S, Yang M (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560:1–23

    Article  Google Scholar 

  96. Choi J-W, Ahn CH, Bhansali S, Henderson HT (2000) A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems. Sens Actuators B 68:34–39

    Article  Google Scholar 

  97. Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76:7250–7256

    Article  Google Scholar 

  98. Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980

    Article  Google Scholar 

  99. Tarn MD, Peyman SA, Robert D, Iles A, Wilhelm C, Pamme N (2009) The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J Magn Magn Mater 321:4115–4122

    Article  Google Scholar 

  100. Tsai SS, Griffiths IM, Stone HA (2011) Microfluidic immunomagnetic multi-target sorting—a model for controlling deflection of paramagnetic beads. Lab Chip 11:2577–2582

    Article  Google Scholar 

  101. Hayes MA, Polson NA, Phayre AN, Garcia AA (2001) Flow-based microimmunoassay. Anal Chem 73:5896–5902

    Article  Google Scholar 

  102. Schneider T, Karl S, Moore LR, Chalmers JJ, Williams PS, Zborowski M (2010) Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter. Analyst 135: 62–70

    Article  Google Scholar 

  103. Deng T, Prentiss M, Whitesides GM (2002) Fabrication of magnetic microfiltration systems using soft lithography. Appl Phys Lett 80:461–463

    Article  Google Scholar 

  104. Khashan SA, Elnajjar E, Haik Y (2011) CFD simulation of the magnetophoretic separation in a microchannel. J Magn Magn Mater 323:2960–2967

    Article  Google Scholar 

  105. Khashan SA, Elnajjar E, Haik Y (2011) Numerical simulation of the continuous biomagnetic separation in a two-dimensional channel. Int J Multiphase Flow 37:947–955

    Article  Google Scholar 

  106. Khashan SA, Furlani EP (2012) Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid Nanofluid 12:565–580

    Article  Google Scholar 

  107. Ng JMK, Gitlin I, Stroock AD, Whitesides GM (2002) Components for integrated poly (dimethylsiloxane) microfluidic systems. Electrophoresis 23:3461–3473

    Article  Google Scholar 

  108. Choi J-W et al (2001) Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed Microdevices 3:191–200

    Article  Google Scholar 

  109. Lee C, Lee H, Westervelt R (2001) Microelectromagnets for the control of magnetic nanoparticles. Appl Phys Lett 79:3308–3310

    Article  Google Scholar 

  110. Ramadan Q, Gijs MA (2012) Microfluidic applications of functionalized magnetic particles for environmental analysis: focus on waterborne pathogen detection. Microfluid Nanofluid 13:529–542

    Article  Google Scholar 

  111. Ramadan Q, Samper V, Poenar DP, Yu C (2006) An integrated microfluidic platform for magnetic microbeads separation and confinement. Biosens Bioelectron 21:1693–1702

    Article  Google Scholar 

  112. Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Appl Phys Lett 78:1775–1777

    Article  Google Scholar 

  113. Afshar R, Moser Y, Lehnert T, Gijs M (2011) Three-dimensional magnetic focusing of superparamagnetic beads for on-chip agglutination assays. Anal Chem 83:1022–1029

    Article  Google Scholar 

  114. Khashan SA, Furlani EP (2014) Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep Purif Technol 125:311–318

    Article  Google Scholar 

  115. Bu M, Christensen TB, Smistrup K, Wolff A, Hansen MF (2008) Characterization of a microfluidic magnetic bead separator for high-throughput applications. Sens Actuators A Phys 145:430–436

    Article  Google Scholar 

  116. Khashan SA, Haik Y, Elnajjar E (2012) CFD simulation for biomagnetic separation involving dilute suspensions. Can J Chem Eng 90:1450–1456

    Article  Google Scholar 

  117. Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8:299–308

    Article  Google Scholar 

  118. Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci U S A 105:18165–18170

    Article  Google Scholar 

  119. Khashan S, Alazzam A, Furlani E (2014) Computational analysis of enhanced magnetic bioseparation in microfluidic systems with flow-invasive magnetic elements. Sci Rep 4:5299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas Alazzam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alazzam, A., Mathew, B., Khashan, S. (2017). Microfluidic Platforms for Bio-applications. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics