Abstract
This chapter provides a brief overview of three actuation mechanisms that are relevant for biomedical applications of microfluidics. Actuation mechanisms are employed in the field of microfluidics for realizing unit operations such as focusing, switching, and separation. The topics dealt with in this chapter include dielectrophoresis, acoustophoresis, and magnetophoresis. The first section provides an introduction to these and related topics while the second section deals specifically on dielectrophoresis. The third and fourth sections detail acoustophoresis and magnetophoresis, respectively. This chapter concludes by providing a quick comparison of these different actuation methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices 26:1880–1886
Nguyen N-T, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House, Norwood
Folch A (2012) Introduction to BioMEMS. CRC, Boca Raton
Saliterman S (2006) Fundamentals of BioMEMS and medical microdevices, vol 153. SPIE Press, Bellingham
Gervais T, Jensen KF (2006) Mass transport and surface reactions in microfluidic systems. Chem Eng Sci 61:1102–1121
Jensen KF (1999) Microchemical systems: status, challenges, and opportunities. AIChE J 45:2051
Kutter JP, Fintschenko Y (2005) Separation methods in microanalytical systems. CRC, Boca Raton
Deen WM (1998) Analysis of transport phenomena, vol 3, Topics in chemical engineering. Oxford University Press, New York
Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411
White F (2006) Viscous fluid flow, McGraw-Hill series in mechanical engineering. McGraw-Hill, New York
Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189
Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–172
Pohl HA (1978) Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, vol 80. Cambridge University Press, Cambridge
Alazzam A, Stiharu I, Bhat R, Meguerditchian AN (2011) Interdigitated comb‐like electrodes for continuous separation of malignant cells from blood using dielectrophoresis. Electrophoresis 32:1327–1336
Chen D, Du H, Li W (2007) Bioparticle separation and manipulation using dielectrophoresis. Sens Actuators A Phys 133:329–334
Alazzam A, Roman D, Nerguizian V, Stiharu I, Bhat R (2010) Analytical formulation of electric field and dielectrophoretic force for moving dielectrophoresis using Fourier series. Microfluid Nanofluid 9:1115–1124
Guo X, Zhu R (2015) Controllably moving individual living cell in an array by modulating signal phase difference based on dielectrophoresis. Biosens Bioelectron 68:529–535
Zhang J, Yan S, Alici G, Nguyen N-T, Di Carlo D, Li W (2014) Real-time control of inertial focusing in microfluidics using dielectrophoresis (DEP). RSC Adv 4:62076–62085
Zhu H, Lin X, Su Y, Dong H, Wu J (2015) Screen-printed microfluidic dielectrophoresis chip for cell separation. Biosens Bioelectron 63:371–378
Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371
Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15:426–432
Huang Y, Holzel R, Pethig R, Wang X-B (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37:1499
Huang Y, Yang J, Wang X-B, Becker FF, Gascoyne PR (1999) The removal of human breast cancer cells from hematopoietic CD34+ stem cells by dielectrophoretic field-flow-fractionation. J Hematother Stem Cell Res 8:481–490
Mathew B, Alazzam A, Abutayeh M, Gawanmeh A, Khashan S (2015) Modeling the trajectory of microparticles subjected to dielectrophoresis in a microfluidic device for field flow fractionation. Chem Eng Sci 138:266–280
Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31:2338
Iliescu C, Yu L, Tay FE, Chen B (2008) Bidirectional field-flow particle separation method in a dielectrophoretic chip with 3D electrodes. Sens Actuators B 129:491–496
LaLonde A, Romero‐Creel MF, Lapizco‐Encinas BH (2015) Assessment of cell viability after manipulation with insulator‐based dielectrophoresis. Electrophoresis 36(13):1479–1484
Tay FE, Yu L, Pang AJ, Iliescu C (2007) Electrical and thermal characterization of a dielectrophoretic chip with 3D electrodes for cells manipulation. Electrochim Acta 52:2862–2868
Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315
Gascoyne PR, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973
Becker FF, Wang X-B, Huang Y, Pethig R, Vykoukal J, Gascoyne P (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92:860–864
Broche LM, Bhadal N, Lewis MP, Porter S, Hughes MP, Labeed FH (2007) Early detection of oral cancer—is dielectrophoresis the answer? Oral Oncol 43:199–203
Cheng J, Sheldon EL, Wu L, Heller MJ, O’Connell JP (1998) Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal Chem 70:2321–2326
Gascoyne PR, Wang X-B, Huang Y, Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl 33:670–678
Pommer MS, Zhang Y, Keerthi N, Chen D, Thomson JA, Meinhart CD, Soh HT (2008) Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29:1213–1218
Camarda M, Scalese S, La Magna A (2015) Analysis of the role of the particle–wall interaction on the separation efficiencies of field flow fractionation dielectrophoretic devices. Electrophoresis 36(13):1396–1404
Mathew B, Alazzam A, Khashan S, El-Khasawneh B (2016), Path of microparticles in a microfluidic device employing dielectrophoresis for hyperlayer field-flow fractionation. Microsystem Technologies, pp 1–12
Wang X-B, Vykoukal J, Becker FF, Gascoyne PR (1998) Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation. Biophys J 74:2689–2701
Huang Y, Wang X-B, Becker FF, Gascoyne P (1997) Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J 73:1118–1129
Yang J, Huang Y, Wang X-B, Becker FF, Gascoyne PR (1999) Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Anal Chem 71:911–918
Yang J, Huang Y, Wang X-B, Becker FF, Gascoyne PR (2000) Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys J 78:2680–2689
Vykoukal J, Vykoukal DM, Freyberg S, Alt EU, Gascoyne PR (2008) Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation. Lab Chip 8:1386–1393
Petersen E et al (2007) DNA migration and separation on surfaces with a microscale dielectrophoretic trap array. Phys Rev Lett 98:088102
Kua CH, Lam YC, Rodriguez I, Yang C, Youcef-Toumi K (2007) Dynamic cell fractionation and transportation using moving dielectrophoresis. Anal Chem 79:6975–6987
Fiedler S, Shirley SG, Schnelle T, Fuhr G (1998) Dielectrophoretic sorting of particles and cells in a microsystem. Anal Chem 70:1909–1915
Taff BM, Voldman J (2005) A scalable addressable positive-dielectrophoretic cell-sorting array. Anal Chem 77:7976–7983
Christensen TB, Pedersen CM, Bang DD, Wolff A (2007) Sample preparation by cell guiding using negative dielectrophoresis. Microelectron Eng 84:1690–1693
Tornay R et al (2008) Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Lab Chip 8:267–273
Nerguizian V, Alazzam A, Roman D, Stiharu I, Burnier M (2012) Analytical solutions and validation of electric field and dielectrophoretic force in a bio‐microfluidic channel. Electrophoresis 33:426–435
Nieuwenhuis JH, Vellekoop MJ (2004) Simulation study of dielectrophoretic particle sorters. Sens Actuators B 103:331–338
Wang X-B, Huang Y, Wang X, Becker FF, Gascoyne P (1997) Dielectrophoretic manipulation of cells with spiral electrodes. Biophys J 72:1887
Yu L, Iliescu C, Xu G, Tay FE (2007) Sequential field-flow cell separation method in a dielectrophoretic chip with 3-D electrodes. J Microelectromech Syst 16:1120–1129
Borgatti M et al (2005) Separation of white blood cells from erythrocytes on a dielectrophoresis (DEP) based ‘Lab-on-a-chip’ device. Int J Mol Med 15:913–920
Bocchi M, Lombardini M, Faenza A, Rambelli L, Giulianelli L, Pecorari N, Guerrieri R (2009) Dielectrophoretic trapping in microwells for manipulation of single cells and small aggregates of particles. Biosens Bioelectron 24:1177–1183
Yu C, Vykoukal J, Vykoukal DM, Schwartz J, Shi L, Gascoyne PR (2005) A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications. J Microelectromech Syst 14:480–487
Li H, Bashir R (2002) Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens Actuators B 86:215–221
Lenshof A, Laurell T (2012) Acoustophoresis. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Berlin, pp 45–50
Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17:1–52
Qiu Y et al (2014) Acoustic devices for particle and cell manipulation and sensing. Sensors 14:14806–14838
Leong T, Johansson L, Juliano P, McArthur SL, Manasseh R (2013) Ultrasonic separation of particulate fluids in small and large scale systems: a review. Ind Eng Chem Res 52:16555–16576
Lenshof A, Evander M, Laurell T, Nilsson J (2012) Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12:684–695
Lin S-CS, Mao X, Huang TJ (2012) Surface acoustic wave (SAW) acoustophoresis: now and beyond. Lab Chip 12:2766–2770
Nilsson A, Petersson F, Jönsson H, Laurell T (2004) Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4:131–135
Piyasena ME, Austin Suthanthiraraj PP, Applegate RW Jr, Goumas AM, Woods TA, López GP, Graves SW (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831–1839
Suthanthiraraj PPA, Piyasena ME, Woods TA, Naivar MA, Lόpez GP, Graves SW (2012) One-dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods 57:259–271
Kuznetsova LA, Coakley WT (2004) Microparticle concentration in short path length ultrasonic resonators: roles of radiation pressure and acoustic streaming. J Acoust Soc Am 116:1956–1966
Shields CW IV, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15:1230–1249
Glynne-Jones P, Boltryk RJ, Hill M (2012) Acoustofluidics 9: modelling and applications of planar resonant devices for acoustic particle manipulation. Lab Chip 12:1417–1426
Gedge M, Hill M (2012) Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. Lab Chip 12:2998–3007
Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223
Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182
Xuan X, Zhu J, Church C (2010) Particle focusing in microfluidic devices. Microfluid Nanofluid 9:1–16
Shi J, Yazdi S, Lin S-CS, Ding X, Chiang I-K, Sharp K, Huang TJ (2011) Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 11:2319–2324
Ding X et al (2012) Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12:4228–4231
Jo MC, Guldiken R (2014) Particle manipulation by phase-shifting of surface acoustic waves. Sens Actuators A Phys 207:39–42
Gossett DR et al (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267
Shi J, Huang H, Stratton Z, Huang Y, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359
Chen Y et al (2014) Standing surface acoustic wave (SSAW)-based microfluidic cytometer. Lab Chip 14:916–923
Li S et al (2013) An on-chip, multichannel droplet sorter using standing surface acoustic waves. Anal Chem 85:5468–5474
Ai Y, Sanders CK, Marrone BL (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126–9134
Zborowski M, Fuh CB, Green R, Sun L, Chalmers JJ (1995) Analytical magnetapheresis of ferritin-labeled lymphocytes. Anal Chem 67:3702–3712
Gijs MA (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40
Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–38
Pankhurst QA, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167
Han K-H, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6:265–273
Jung J, Han K-H (2009) Lateral-driven continuous magnetophoretic microseparator for separating blood cells based on their native magnetic properties. In: Solid-state sensors, actuators and microsystems conference, 2009. TRANSDUCERS 2009. International, 2009. IEEE, pp 620–623
Schüler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473
Inglis DW, Riehn R, Austin R, Sturm J (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85:5093–5095
Inglis DW, Riehn R, Sturm JC, Austin RH (2006) Microfluidic high gradient magnetic cell separation. J Appl Phys 99:08K101
Saias L, Saliba A-E, Viovy J-L, Pierga J-Y, Vielh P, Farace F (2009) Microfluidic magnetic cell sorting system for cancer diagnosis. La Houille Blanche, pp 105–111
Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic–microfluidic blood cleansing device. Lab Chip 9:1171–1177
Tsutsui H, Ho C-M (2009) Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun 36:92–103
Šafařık I, Šafařıková M (1999) Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl 722:33–53
Dini L, Abbro L (2005) Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36:195–217
Yi C, Li C-W, Ji S, Yang M (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560:1–23
Choi J-W, Ahn CH, Bhansali S, Henderson HT (2000) A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems. Sens Actuators B 68:34–39
Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76:7250–7256
Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980
Tarn MD, Peyman SA, Robert D, Iles A, Wilhelm C, Pamme N (2009) The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J Magn Magn Mater 321:4115–4122
Tsai SS, Griffiths IM, Stone HA (2011) Microfluidic immunomagnetic multi-target sorting—a model for controlling deflection of paramagnetic beads. Lab Chip 11:2577–2582
Hayes MA, Polson NA, Phayre AN, Garcia AA (2001) Flow-based microimmunoassay. Anal Chem 73:5896–5902
Schneider T, Karl S, Moore LR, Chalmers JJ, Williams PS, Zborowski M (2010) Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter. Analyst 135: 62–70
Deng T, Prentiss M, Whitesides GM (2002) Fabrication of magnetic microfiltration systems using soft lithography. Appl Phys Lett 80:461–463
Khashan SA, Elnajjar E, Haik Y (2011) CFD simulation of the magnetophoretic separation in a microchannel. J Magn Magn Mater 323:2960–2967
Khashan SA, Elnajjar E, Haik Y (2011) Numerical simulation of the continuous biomagnetic separation in a two-dimensional channel. Int J Multiphase Flow 37:947–955
Khashan SA, Furlani EP (2012) Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid Nanofluid 12:565–580
Ng JMK, Gitlin I, Stroock AD, Whitesides GM (2002) Components for integrated poly (dimethylsiloxane) microfluidic systems. Electrophoresis 23:3461–3473
Choi J-W et al (2001) Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed Microdevices 3:191–200
Lee C, Lee H, Westervelt R (2001) Microelectromagnets for the control of magnetic nanoparticles. Appl Phys Lett 79:3308–3310
Ramadan Q, Gijs MA (2012) Microfluidic applications of functionalized magnetic particles for environmental analysis: focus on waterborne pathogen detection. Microfluid Nanofluid 13:529–542
Ramadan Q, Samper V, Poenar DP, Yu C (2006) An integrated microfluidic platform for magnetic microbeads separation and confinement. Biosens Bioelectron 21:1693–1702
Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Appl Phys Lett 78:1775–1777
Afshar R, Moser Y, Lehnert T, Gijs M (2011) Three-dimensional magnetic focusing of superparamagnetic beads for on-chip agglutination assays. Anal Chem 83:1022–1029
Khashan SA, Furlani EP (2014) Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep Purif Technol 125:311–318
Bu M, Christensen TB, Smistrup K, Wolff A, Hansen MF (2008) Characterization of a microfluidic magnetic bead separator for high-throughput applications. Sens Actuators A Phys 145:430–436
Khashan SA, Haik Y, Elnajjar E (2012) CFD simulation for biomagnetic separation involving dilute suspensions. Can J Chem Eng 90:1450–1456
Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8:299–308
Adams JD, Kim U, Soh HT (2008) Multitarget magnetic activated cell sorter. Proc Natl Acad Sci U S A 105:18165–18170
Khashan S, Alazzam A, Furlani E (2014) Computational analysis of enhanced magnetic bioseparation in microfluidic systems with flow-invasive magnetic elements. Sci Rep 4:5299
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Alazzam, A., Mathew, B., Khashan, S. (2017). Microfluidic Platforms for Bio-applications. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-32180-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32178-3
Online ISBN: 978-3-319-32180-6
eBook Packages: EngineeringEngineering (R0)